Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Aim : The purpose of the current study was to compare between deep inspiration breath-hold (DIBH) and free-breathing (FB) method in the setup reproducibility and to perform a dosimetric comparison between both methods in left-sided breast cancer patients who undergo the UK FAST trial. Materials and methods : The online matching correction data were retrospectively collected for 50 patients treated with the FAST trial. They were equally divided into DIBH and FB groups to compare between both methods in the setup reproducibility and create the appropriate planning target volume (PTV) margin. Ten patients out of the fifty were scanned in DIBH and FB to perform a dosimetric comparison with the strict acceptance criteria of the FAST trial. Results : All heart dosimetric parameters of the DIBH was significantly lower than that of FB (p < 0.001), and the lung V30% of DIBH plans was significantly lower than FB plans (p = 0.03). There was no statistically significant difference between the two methods in the other organs at risk doses. To fulfill the heart and lung constraints in FB plans, the PTV V90% was reduced by 3.4%, and three plans would not attain the PTV acceptance criteria. There was no significant difference between the systematic or random setup errors between both methods except the left-right random shift was significantly lower in DIBH cases (p = 0.004). The calculated PTV margins were (4 mm, 3 mm, and 4 mm) for DIBH group, and (5 mm, 6 mm, and 8 mm) for FB group in the anterior-posterior, superior-inferior, and left-right shifts, respectively. Conclusion : It is highly warranted to treat left-sided breast cancer patients with the DIBH technique when the UK FAST trial is employed for treatment.
Aim. The aim of the current study was to compare between the deep inspiration breath-hold (DIBH) technique and free-breathing (FB) method in the treatment delivery uncertainty of breast cancer radiotherapy using skin dose measurements. Methods. In a prospective manner, eighty patients were randomly selected for skin dose measurements, and they were assigned to two groups. DIBH (40 patients) and FB (40 patients). The systematic inter-fraction dose variation was quantified using the mean percentage error (MPE) between the average measured total dose per session in three consecutive sessions and the corresponding calculated point dose from the treatment planning system. The random inter-fraction dose variation was quantified using the standard deviation (SD) of the dose delivered by the medial or lateral tangential fields, or the total session dose in the three sessions (SD MT , SD LT , or SD total , respectively). While the random intra-fraction dose variation was quantified using the SD of the dose difference between the medial and lateral tangential fields in three consecutive sessions (SD MT-LT ). Results. There was no statistically significant difference in MPE between the DIBH and FB groups (p=0.583). Moreover, the mean SD total and SD MT of the DIBH group were significantly lower than that of the FB group (2.75±2.33 cGy versus 4.45 cGy±4.33, p=0.048) and (1.94±1.63 cGy versus 3.76±3.42 cGy, p=0.007), respectively. However, there was no significant difference in the mean SD LT and SD MT-LT between the two groups (p>0.05). Conclusion. In addition to the advantage of reducing the cardiopulmonary radiation doses in left breast cancer, the DIBH technique could reduce the treatment delivery uncertainty compared to the FB method due to the significant reduction in the random inter-fraction dose variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.