Abstract-The recent witnessed evolution of cellular networks from a carefully planned deployment to more irregular, heterogeneous deployments of Macro, Pico and Femto-BSs motivates new analysis and design approaches. In this paper, we analyze the coverage probability in cellular networks assuming repulsive point processes for the base station deployment. In particular, we characterize, analytically using stochastic geometry, the downlink probability of coverage under a Matern hardcore point process to ensure minimum distance between the randomly located base stations. Assuming a mobile user connects to the nearest base station and Rayleigh fading, we derive two lower bounds expressions on the downlink probability of coverage that is within 4% from the simulated scenario. To validate our model, we compare the probability of coverage of the Matern hardcore topology against an actual base station deployment obtained from a public database. The comparison shows that the actual base station deployment can be fitted by setting the appropriate Matern point process density.
Energy harvesting (EH) is a promising technology for realizing energy efficient wireless networks. In this paper, we utilize the ambient RF energy, particularly interference from neighboring transmissions, to replenish the batteries of the EH enabled nodes. However, RF energy harvesting imposes new challenges into the analysis of wireless networks. Our objective in this work is to investigate the performance of a slotted Aloha random access wireless network consisting of two types of nodes, namely Type I which has unlimited energy supply and Type II which is solely powered by an RF energy harvesting circuit. The transmissions of a Type I node are recycled by a Type II node to replenish its battery. We characterize an inner bound on the stable throughput region under half-duplex and full-duplex energy harvesting paradigms as well as for the finite capacity battery case. We present numerical results that validate our analytical results, and demonstrate their utility for the analysis of the exact system.
In cache-aided networks, the server populates the cache memories at the users during low-traffic periods, in order to reduce the delivery load during peak-traffic hours. In turn, there exists a fundamental trade-off between the delivery load on the server and the cache sizes at the users. In this paper, we study this trade-off in a multicast network where the server is connected to users with unequal cache sizes and the number of users is less than or equal to the number of library files. We propose centralized uncoded placement and linear delivery schemes which are optimized by solving a linear program. Additionally, we derive a lower bound on the delivery memory trade-off with uncoded placement that accounts for the heterogeneity in cache sizes. We explicitly characterize this trade-off for the case of three end-users, as well as an arbitrary number of end-users when the total memory size at the users is small, and when it is large. Next, we consider a system where the server is connected to the users via rate limited links of different capacities and the server assigns the users' cache sizes subject to a total cache budget. We characterize the optimal cache sizes that minimize the delivery completion time with uncoded placement and linear delivery. In particular, the optimal memory allocation balances between assigning larger cache sizes to users with low capacity links and uniform memory allocation.
Index TermsCoded caching, uncoded placement, cache size optimization, multicast networks.This work was presented in part at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.