Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.
There has been a growing interest in laser cleaning applications for a variety of organic materials such as paper, parchment, textiles, and leather during the last decade. However, archaeological organic materials, notably papyrus, have rarely been investigated. This contribution examines whether removal of burial encrustation can be justified in view of its short-term and long-term effects on the substrate. To examine this, tests using mock objects have been performed. Using artificially soiled and archaeological papyrus samples, optimization of laser cleaning parameters using a picosecond laser (1064 nm, various operating conditions) was attempted. Optimization was based on colorimetry, optical microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and cellulose degree of polymerization data, both before and after accelerated degradation. In papyrus, there is no clear damage threshold, and substrate degradation can always be observed and is comparable in treated (cleaned) and untreated (soiled) objects. Therefore, the decision on whether to clean papyrus using lasers is predominantly based on aesthetic and treatability (e.g. need for consolidation) criteria.
This work characterizes both tanning and colouring materials found in ancient Egyptian leather objects from the Metropolitan Museum of Art. The analytical investigations focused on assessing the development of the technology of ancient tanners using high-performance liquid chromatography (HPLC), surface-enhanced Raman spectroscopy (SERS), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), X-ray radiography and a scanning electron microscope connected to an energy-dispersive X-ray detector (SEM-EDX). Reference leather samples and archaeological leather objects were investigated to identify the animal skin species and the early use of hydrolyzable vegetable tannins for leather tanning. Different methods were used to colour th leather, including madder dying and staining with hematite, or painting with Egyptian blue and Egyptian green.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.