The use of growth regulators such as gibberellic acid (GA3) and biostimulants, including diluted bee honey (Db-H) can improve drought tolerance in many crops, including the faba bean (Vicia faba L.). Db-H contains high values of osmoprotectants, mineral nutrients, vitamins, and many antioxidants making it an effective growth regulator against environmental stress effects. Therefore, the present study was planned to investigate the potential improvement in the faba bean plant performance (growth and productivity) under full watering (100% of crop evapotranspiration (ETc)) and drought stress (60% of ETc) by foliar application of GA3 (20 mg L−1) or Db-H (20 g L−1). The ameliorative impacts of these growth regulators on growth, productivity, physio-biochemical attributes, nutrient status, antioxidant defense system, and phytohormones were evaluated. GA3 or Db-H attenuated the negative influences of drought stress on cell membrane stability, ion leakage, relative water content, nutrient status, leaf pigments related to photosynthesis (chlorophylls and carotenoids), and efficiency of the photosystem II (PSII in terms of Fv/Fm and performance index), thus improving faba bean growth, green pod yield, and water use efficiency. Drought stress caused an abnormal state of nutrients and photosynthetic machinery due to increased indicators of oxidative stress (malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide (O2•−)), associated with increased osmoprotectants (proline, glycine betaine, soluble sugars, and soluble protein), non-enzymatic antioxidants (ascorbic acid, glutathione, and α-tocopherol), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase). However, foliar-applied GA3 or Db-H mediated further increases in osmoprotectants, antioxidant capacity, GA3, indole-3-acetic acid, and cytokinins, along with decreased levels of MDA and abscisic acid. These results suggest the use of GA3 or Db-H at the tested concentrations to mitigate drought-induced damage in bean plants to obtain satisfactory growth and productivity under a water deficit of up to 40%.
Water shortage and salinity are major challenges for sustaining global food security. Using nutrients in the nano-scale formulation including zinc oxide nanoparticles (ZnO NP) is a novel fertilization strategy for crops. In this study, two field-based trials were conducted during 2018 and 2019 to examine the influence of three ZnO NP concentrations (0, 50, and 100 ppm) in eggplant grown under full irrigation (100 of crop evapotranspiration; ETc) and drought stress (60% of ETc). Plant growth, yield, water productivity (WP), physiology, biochemistry, and anatomy responses were evaluated. Drought stress significantly decreased membrane stability index (MSI), relative water content (RWC), and photosynthetic efficiency, thus hampered eggplant growth and yield. In contrast, exogenous ZnO NP to water-stressed eggplant resulted in increased RWC and MSI associated with improved stem and leaf anatomical structures and enhanced photosynthetic efficiency. Under drought stress, supplementation of 50 and 100 ppm ZnO NP improved growth characteristics and increased fruit yield by 12.2% and 22.6%, respectively, compared with fully irrigated plants and nonapplied ZnO NP. The highest water productivity (WP) was obtained when eggplant was irrigated with 60% ETc and foliarly treated with 50 or 100 ppm of ZnO NP, which led to 50.8–66.1% increases in WP when compared with nontreated fully irrigated plants. Collectively, these findings demonstrated that foliar spraying ZnO NP gives the utility for alleviating drought stress effects on eggplant cultivated in saline soil.
Water is an essential resource for food production, as agriculture consumes close to 70% of the 15 total freshwater, and its shortage is becoming critical in arid and semiarid areas of the world. 16 Therefore, it is important to use water more efficiently. The objectives of this project are to 17 determine the productive response and the irrigation water use efficiency of seedless watermelon to 18 three irrigation management strategies over two growing seasons. This was done by applying 100, 19 75 and 50% of the irrigation water requirements (IWR) the first year, in the second year added six 20 additional treatments, of which three treatments were regulated deficit irrigation with 75% IWR 21 during the vegetative growth, fruit development and fruit ripening stages, and the other three 22 treatments were with 50% IWR during the same stages. The exposure of watermelon plants to 23 severe deficit irrigation resulted in a reduction in dry biomass, total and marketable yield, average 24 fruit weight, fruit number and harvest index, and without improvement of marketable fruit quality. 25 The fruit ripening was the less sensitive stage to water deficits. Relative water content and cell 26 membrane stability index decreased as the water deficit increased. Irrigation water use efficiency 27 decreased to a lesser extend during the fruit ripening stage than when water restriction were 28 applied during different growth stages. If water is readily available, irrigating with 100% of water 29 requirements is recommended, but in the case of water scarcity, applying water shortage during fruit ripening stage would be advisable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.