Background:The casein is the main protein that appears to be involved in childhood diseases caused by the consumption of adapted infant-milk formula (IMF).
This study investigates the impact of aggregate and pipe cooling systems on concrete behaviour at a mesoscale level. Firstly, a Chemo-Thermo-Mechanical model is developed to investigate the initial stress state of early age hydration concrete followed by a mechanical analysis of the consequences brought by this initial state. Pipe and aggregate cooled concrete samples have been subjected to tensile and cyclic loadings. The results have been discussed in terms of damage and crack openings. It has been concluded that early age hydration modifies the initial conditions of any concrete structures. Regarding the cyclic behaviour, initial state due to the hydration process leads to permanent displacements corresponding to damage and cracking. The cooling methods improve the mechanical behaviour of concrete.
The control of thermal cracks induced by the effect of early age are the main concerns in concrete dam during the construction stage. Despite its importance, detailed thermal analysis of concrete gravity dams during the construction period is relatively rarely in the literature, eventually because prediction the behavior of concrete gravity dam on early stage requires taking into account the several phenomena and interaction, demands a considerable computational effort. To overcome this drawback, the present paper proposes a numerical modeling strategy to predict the thermo-mechanical behavior of concrete gravity dams during construction periods considering the effect of early age and the construction schedule. The proposed strategy is also used to study the effect of pre-cooling methods on the thermal-mechanical fields on concrete gravity dam during construction process. For this purpose, a Chemo-Thermo-Mechanical model is developed for predicting the behavior of a gravity dam at early stages. Firstly, temperature field model was established and verified with the results reported in the literature. Furthermore, the thermo-mechanical behavior of a concrete gravity dam is performed for two configurations: Early age state with pre-cooling and early age without pre-cooling. Thermal stress analysis was also conducted and results showed that the greatest tensile stresses after construction are developed at the heel of dams and resumption of concreting interface due to the internal restraint imposed by the concrete. The numerical results showed that the pre-cooling methods is an effective way to reduce both the hydration temperature and tensile stress induced by the effect of early age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.