A stepped spillway, which is defined as a spillway with steps on the chute, can be used to improve the energy dissipation of descending water. Although uniform stepped spillways have been studied comprehensively, non-uniform stepped spillways need more attention. In the interest of maximum energy dissipation, in this study, non-uniform stepped spillways were investigated numerically. To this end, within the range of skimming flow, four different types of non-uniform step lengths, including convex, concave, random, and semi-uniform configurations, were tested in InterFOAM. To evaluate the influence of non-uniform step lengths on energy dissipation, the height and number of steps in all models were fixed and equal to a constant number. The results indicated that in semi-uniform stepped spillways, when the ratio between the lengths of the successive steps is 1:3, a vortex interference region occurs within the two adjacent cavities of the entire stepped chute, and as a result, the energy dissipation increases by up to 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.