This research work explores the use of single neural networks and bootstrap aggregated neural networks for predicting hourly global solar radiation. A database of 3606 data points were from the Renewable Energies Development Center, radiometric station 'Shems' of Bouzareah. The single neural networks and bootstrap aggregated neural networks were built together. The precision and durability of neural network models generated with an incomplete quantity of training datasets were improved using bootstrap aggregated neural networks. To produce numerous sets of training data points, the training data was re-sampled utilising bootstrap resampling by replacement. A neural network model was built for each of the data points. The individual neural network models were then combined to produce the bootstrap aggregated neural networks. The experimental and predicted values of global solar radiation were compared, and lower root mean squared errors (68.3968 and 62.4856 Wh m −2 ) were discovered during the testing phases for single neural networks and bootstrap aggregated neural networks, respectively. The results of these models show that the bootstrap aggregated neural networks model is more accurate and robust than single neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.