The vulnerabilities of face biometric authentication systems to spoofing attacks have received a significant attention during the recent years. Some of the proposed countermeasures have achieved impressive results when evaluated on intra-tests i.e. the system is trained and tested on the same database. Unfortunately, most of these techniques fail to generalize well to unseen attacks e.g. when the system is trained on one database and then evaluated on another database. This is a major concern in biometric anti-spoofing research which is mostly overlooked. In this paper, we propose a novel solution based on describing the facial appearance by applying Fisher Vector encoding on Speeded-Up Robust Features (SURF) extracted from from different color spaces. The evaluation of our countermeasure on three challenging benchmark face spoofing databases, namely the CASIA Face Anti-Spoofing Database, the Replay-Attack Database and MSU Mobile Face Spoof Database, showed excellent and stable performance across all the three datasets. Most importantly, in inter-database tests, our proposed approach outperforms the state of the art and yields in very promising generalization capabilities, even when only limited training data is used.
Automatic medical diagnosis is an emerging center of interest in computer vision as it provides unobtrusive objective information on a patient's condition. The face, as a mirror of health status, can reveal symptomatic indications of specific diseases. Thus, the detection of facial abnormalities or atypical features is at upmost importance when it comes to medical diagnostics. This survey aims to give an overview of the recent developments in medical diagnostics from facial images based on computer vision methods. Various approaches have been considered to assess facial symptoms and to eventually provide further help to the practitioners. However, the developed tools are still seldom used in clinical practice, since their reliability is still a concern due to the lack of clinical validation of the methodologies and their inadequate applicability. Nonetheless, efforts are being made to provide robust solutions suitable for healthcare environments, by dealing with practical issues such as real-time assessment or patients positioning. This survey provides an updated collection of the most relevant and innovative solutions in facial images analysis. The findings show that with the help of computer vision methods, over 30 medical conditions can be preliminarily diagnosed from the automatic detection of some of their symptoms. Furthermore, future perspectives, such as the need for interdisciplinary collaboration and collecting publicly available databases, are highlighted.
The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small. Second, all the works that have been carried out in the field are separate; there are no unified data, classes, and evaluation protocols. In this work, based on public and newly collected data, we propose two X-ray COVID-19 databases, which are three-class COVID-19 and five-class COVID-19 datasets. For both databases, we evaluate different deep learning architectures. Moreover, we propose an Ensemble-CNNs approach which outperforms the deep learning architectures and shows promising results in both databases. In other words, our proposed Ensemble-CNNs achieved a high performance in the recognition of COVID-19 infection, resulting in accuracies of 100% and 98.1% in the three-class and five-class scenarios, respectively. In addition, our approach achieved promising results in the overall recognition accuracy of 75.23% and 81.0% for the three-class and five-class scenarios, respectively. We make our databases of COVID-19 X-ray scans publicly available to encourage other researchers to use it as a benchmark for their studies and comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.