In this paper, we present the linearization control of an asynchronous machine. It allows decoupling and linearization of the system without including flux orientation. This non-linear control (NLC) applied to the asynchronous machine breaks up the system into two linear and independent mono systems. The speed and the Id current controls are carried out by traditional regulators PI. A qualitative analysis of the evolution of the principal variables describing the behaviour of the global system (IM-control) and its robustness is developed by several tests of digital simulation in the final stage. Numerous tests have been performed under Simulink/Matlab to show the control system performances
This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer has been developed. Several simulations have also been carried out to demonstrate system performance.
This paper presents a field-oriented control (FOC) of a dual star induction generator (DSIG) applied in a grid-connected wind energy conversion system. Currently, the dual star induction machine (DSIM) is increasingly used among multiphase machines. The machine has two star-connections, sharing the same stator offset, by an electrical angle of 30° and fed by two parallel converters. Maximum power point tracking (MPPT) is illustrated in a first stage, in order to extract a maximum of power under fluctuating wind speed. In a second stage, vector control of a DSIG with FOC is described. Finally, voltage oriented control (VOC) is used to ensure the power factor unity on the grid side. The main contribution of the presented paper is the application of a simple architecture of an artificial neural network (ANN) controller in order to improve the robustness and stability of the system, especially against the parameter change. In comparison with the conventional control, which is known by its sensitivity, the proposed neural MPPT with neural FOC (NMPPT-NFOC) presents better performance under normal and abnormal conditions. The robustness and effectiveness of the proposed control has been validated through illustrative simulation results with different functional zones, and for fixed and variable wind speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.