Metamorphic virus recognition is the most challenging task for antivirus software, because such viruses are the hardest to detect as they change their appearance and structure on each new infection. In this study, the authors present an effective system for metamorphic virus recognition based on statistical machine learning techniques. The authors approach has successfully scored high detection rate for tested metamorphic virus classes and very low false-positive errors. The system is also able to learn new patterns of viruses for future recognition. The authors conclude the results of their simulation with results analysis and future enhancements in the system to detect other virus classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.