The CMV DNA load determined in inflamed intestinal tissue predicts resistance to steroid treatment and to three drug regimens in UC. Initiation of an early antiviral treatment in these patients might delay the occurrence of resistance to current treatments.
The risk of adverse effects of nitrous oxide (N2O) exposure is insufficiently recognized despite its widespread use. These effects are mainly reported through case reports. We conducted an individual patient data meta-analysis to assess the prevalence of clinical, laboratory, and magnetic resonance findings in association with N2O exposure in medical and recreational settings. We calculated the pooled estimates for the studied outcomes and assessed the potential bias related to population stratification using principal component analysis. Eighty-five publications met the inclusion criteria and reported on 100 patients with a median age of 27 years and 57% of recreational users. The most frequent outcomes were subacute combined degeneration (28%), myelopathy (26%), and generalized demyelinating polyneuropathy (23%). A T2 signal hyperintensity in the spinal cord was reported in 68% (57.2–78.8%) of patients. The most frequent clinical manifestations included paresthesia (80%; 72.0–88.0%), unsteady gait (58%; 48.2–67.8%), and weakness (43%; 33.1–52.9%). At least one hematological abnormality was retrieved in 71.7% (59.9–83.4%) of patients. Most patients had vitamin B12 deficiency: vitamin B12 <150 pmol/L (70.7%; 60.7–80.8%), homocysteine >15 µmol/L (90.3%; 79.3–100%), and methylmalonic acid >0.4 µmol/L (93.8%; 80.4–100%). Consistently, 85% of patients exhibited a possibly or probably deficient vitamin B12 status according to the cB12 scoring system. N2O can produce severe outcomes, with neurological or hematological disorders in almost all published cases. More than half of them are reported in the setting of recreational use. The N2O-related burden is dominated by vitamin B12 deficiency. This highlights the need to evaluate whether correcting B12 deficiency would prevent N2O-related toxicity, particularly in countries with a high prevalence of B12 deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.