We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using as reference the ab-initio simulation. The pair structure in the amorphous state is computed from a potential of the Stillinger Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual, and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion of the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.
The combination of classical and ab initio molecular dynamics simulations for computing structural and thermodynamic properties of metallic liquids is illustrated on the example of ruthenium and ruthenium-based alloys. The classical simulations used embedded atom model (EAM) potentials parametrized with the force matching method. The ab initio reference data were obtained using two electronic structure codes implementing the DFT plane wave/pseudopotential method. Several methodological aspects in the determination of structural and thermodynamic properties in the liquid phase are examined, first for pure ruthenium. The efficiency of this combined method is finally illustrated on the structure and the pressure of ternary alloys of platinum group metals of interest in the treatment of nuclear wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.