Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and emerging technologies (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work.The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move towards Industry 5.0.
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.