This paper introduces an evolutionary approach for training the adaptive network-based fuzzy inference system (ANFIS). The previous works are based on gradient descendent (GD); this algorithm converges very slowly and gets stuck down at bad local minima. This study applies one of the swarm intelligent branches, named particle swarm optimization (PSO), where the premise parameters of the rules are optimized by a PSO, and the conclusion part is optimized by least-squares estimation (LSE). The hybrid PSO-ANFIS model is performed for speaker recognition on CHAINS speech dataset. The results obtained by the hybrid model showed an improvement on the accuracy compared to similar ANFIS based on gradient descendent optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.