Diabetic retinopathy, the most common diabetic eye disease, occurs when blood vessels in the retina change. Sometimes these vessels swell and leak fluid or even close off completely. In other cases, abnormal new blood vessels grow on the surface of the retina. Early detection can potentially reduce the risk of blindness. This paper presents an automated method for the detection of exudates in retinal color fundus images with high accuracy, First, the image is converted to HSI model, after preprocessing possible regions containing exudate, the segmented image without Optic Disc (OD) using algorithm Graph cuts, Invariant moments Hu in extraction feature vector are then classified as exudates and non-exudates using a Neural Network Classifier. All tests are applied on database DIARETDB1.
<p>In this paper, a graph based handwritten Tifinagh character recognition system is presented. In preprocessing Zhang Suen algorithm is enhanced. In features extraction, a novel key point extraction algorithm is presented. Images are then represented by adjacency matrices defining graphs where nodes represent feature points extracted by a novel algorithm. These graphs are classified using a graph matching method. Experimental results are obtained using two databases to test the effectiveness. The system shows good results in terms of recognition rate.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.