The applications require coverage of the whole monitored area for long periods of time. Clustering is a way to reduce communications, minimize energy consumption and organize messages among the cluster head and their members. The message exchange of communication and data transmission between the different sensor nodes must be minimized to keep and extended the lifetime of the network because of limited energy resources of the sensors. In this paper, we take into consideration the problem isolated nodes that are away from the cluster head (CH) and by consequence or CH is not within the reach from these nodes. To solve this problem, we propose O-LEACH (Orphan Low Energy Adaptive ClusteringHierarchy) a routing protocol that takes into account the orphan nodes. Indeed, a cluster member will be able to play the role of a gateway which allows the joining of orphan nodes. Our contribution is to election a cluster head that has enough energy for a better now to coordinate with these member nodes and maintain the full coverage for applications which requires of useful data for the entire area to be covered. The simulation results show that O-LEACH performs better than LEACH in terms of connectivity rate, energy, scalability and coverage.
The optimum use of coverage in wireless sensor networks (WSNs) is very important. The hierarchical routing protocol LEACH (Low Energy Adaptive Clustering Hierarchy) is referred to as the basic algorithm of distributed clustering protocols. LEACH allows clusters formation. Each cluster has a leader called Cluster Head (CH). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node join a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus several sensor nodes cannot reach any CH. As a result, the remaining part of the controlled field will not be covered; some sensor nodes will be outside the network. To solve this problem, the authors propose O-LEACH (Orphan Low Energy Adaptive Clustering Hierarchy), a routing protocol that takes into account the orphan nodes. O-LEACH presents two scenarios, a gateway and sub cluster that allow the joining of orphan nodes.
The emergence of IoT applications has risen the security issues of the big data sent by the IoT devices. The design of lightweight cryptographic algorithms becomes a necessity. Moreover, elliptic curve cryptography (ECC) is a promising cryptographic technology that has been used in IoT. However, connected objects are resource-constrained devices, with limited computing power and energy power. Driven by these motivations, we propose and develop a secure cryptographic protocol called CoopECC which leverages the organization of IoT nodes into cluster to distribute the load of cluster head (CH) among its cluster members. This technique proves that it optimizes the resource consumption of the IoT nodes including computation and energy consumption. Performance evaluation, done with TOSSIM simulator, shows that the proposed protocol CoopECC outperforms the original ECC algorithm, in terms of computation time, consumed energy, and the network’s lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.