The increased levels of fine particles in the atmosphere are suspected of aggravating cardiopulmonary diseases, but the determinants of particle toxicity are poorly understood. This work aims at studying the role of composition and size in the toxicity of size-segregated particulate matter (PM) collected at different sites on human bronchial epithelial cells. PM were sampled at a traffic urban site (Urb S) and a rural site (Rur S) during the pesticide-spreading period. Ultrafine (UF), fine (F), and coarse (C) PM were characterized by their shape and chemical composition. Whatever the site, the finest PM (UF and F) induced the mRNA expression of CYP1A1, a biomarker of polyaromatic hydrocarbons (PAH) exposure, NQO-1 and heme HO-1, two antioxidant responsive element-driven genes; and two effect biomarkers, GM-CSF, a proinflammatory cytokine and amphiregulin (AR), a growth factor. C PM have a low or no effect. Interestingly, AR is more strongly induced by rural PM at the same mass exposure. These discrepancies suggest involvement of PM chemical composition: rural PM bearing the characteristics of aged aerosols with a high content of water-soluble components, and PM at urban kerbside sites containing mainly water-insoluble components. To conclude, we provide evidence that the finest PM fractions, whatever their origin, are more prone to induce exposure and effect biomarkers. The AR differential expression suggests a source-dependent effect requiring further investigation because of the role of this growth factor in airway remodeling, a characteristic feature of chronic lung respiratory diseases exacerbated by particulate pollution.
SUMMARYPassive sampling surveys followed by geostatistical data analysis have become a common and efficient approach for mapping background concentrations at regional and urban scales. Traffic-related pollution is also a matter of concern as regards population exposure but since it acts at shorter spatiotemporal scales, it is usually not integrated in the same maps. However, to provide more comprehensive information to the authorities and the public, the agencies responsible for air quality monitoring are searching for innovative ways of representing background and roadside concentrations together. A methodology based on geostatistics and the examination of the relationships between seasonal nitrogen dioxide concentrations and auxiliary variables is proposed in this study. It is applied to data collected in the French Centre region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.