There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines), automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.
This paper presents a new color document image segmentation system suitable for historical Arabic manuscripts. Our system is composed of a hybrid method which couple together background light intensity normalization algorithm and k-means clustering with maximum likelihood (ML) estimation, for foreground/ background separation. Firstly, the background normalization algorithm performs separation between foreground and background. This foreground is used in later steps. Secondly, our algorithm proceeds on luminance and distort the contrast. These distortions are corrected with a gamma correction and contrast adjustment. Finally, the new enhanced foreground image is segmented to foreground/background on the basis of ML estimation. The initial parameters for the ML method are estimated by k-means clustering algorithm. The segmented image is used to produce a final restored document image. The techniques are tested on a set of Arabic historical manuscripts documents from the National Tunisian Library. The performance of the algorithm is demonstrated on by real color manuscripts distorted with show-through effects, uneven background color and localized spot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.