Cyclosporine A (CsA) is an immunosuppressant frequently used in the therapy of autoimmune disorders, including skin-related diseases. Aiming towards topical delivery, CsA was successfully incorporated into lipid nanoparticles of Lipocire DM and Pluronic F-127 using the hot homogenization method. Two different nanocarriers were optimized: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) where oleic acid was the liquid lipid. The developed nanoparticles showed mean sizes around 200 nm, a negative surface charge, and drug entrapment efficiencies around 85% and 70% for SLNs and NLCs, respectively. The spherical CsA-loaded lipid nanoparticles were stable for 9 weeks when stored at room temperature, and exhibited in vitro pH-dependent release under skin mimetic conditions, following the Peppas–Korsmeyer model. CsA, when loaded in SLNs, was safe to be used up to 140 μg mL−1 in fibroblasts and keratinocytes, while CsA-loaded NLCs and free drug exhibited IC50 values of 55 and 95 μg mL−1 (fibroblasts) and 28 and 30 μg mL−1 (keratinocytes), respectively. The developed SLNs were able to retain the drug in pork skin with a reduced permeation rate in relation to NLCs. These findings suggest that SLNs are a potential alternative to produce stable and safe CsA nanocarriers for topical administration.
Nanochitosan/sodium alginate (NCS/SA) beads were prepared using nanochitosan and alginate as a high-performance absorbent for Pb(II) removal from aqueous solution. The morphology, structure, thermal stability, surface area, and elements present in the NCS/SA beads before and after adsorption were characterized using instrumental techniques like SEM, FTIR, TGA, BET, and EDX analysis, respectively. Various adsorption parameters were studied. The results indicated that the equilibrium adsorption data were fitted to Langmuir isotherms and the maximum Langmuir monolayer capacity of Pb(II) was 178.57 mg/g at 45°C. The adsorption process was in good agreement with pseudo-first-order kinetic model. Mechanism studies showed that electrostatic interaction and ion exchange were the major mechanisms for lead (II) removal by the NCS/SA beads. The results of this study indicate that NCS/SA beads could be used as an effective adsorbent for the elimination of lead (II) present in aqueous solution.
• Practitioner points• Nanochitosan/sodium alginate beads were synthesized using Ca 2+ as a crosslinking agent. • NCS/SA beads were used to remove Pb(II) for the first time and working parameters were optimized. • Adsorption monolayer capacity of NCS/SA adsorbent towards Pb (II) was found to be 178.57 mg/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.