The Western Mediterranean basin has been formed by Miocene back-arc extension and is underlain by a thin and young lithosphere. This young lithosphere is warm, as testified by an overall elevated offshore heat flow. Heat flow within the Western Mediterranean is, however, highly variable and existing data are unevenly distributed and poorly studied in the central part of the Liguro-Provençal and Algero-Balearic basins. This central part is floored by a young oceanic crust, bordered by different continental margins, cut by transform faults, and filled by up to 8 km of sediments. We present a total of 148 new heat flow data collected during the MedSalt and WestMedFlux cruises in 2015 and 2016 and aligned along seven regional profiles that show an important heat flow variability on the basin-scale, but also locally on the margins. A new heat flow map for the Western Mediterranean outlines the following regional features: (1) a higher average heat flow in the Algero-Balearic basin compared to the Liguro-Provençal basin (94 ± 13 mW/m² and 78 ±16 mW/m², respectively), and (2) a regional thermal asymmetry in both basins, but with opposed heat flow trends. Up to twenty percent of this heat flow difference can be explained by sediment blanketing, but age and heterogeneity of ocean crust due to an asymmetric and polyphased opening of the basins are believed to have given the major thermal imprint. Estimates of the age of the oceanic crust based on the new heat flow suggest a considerably younger West Algerian basin (16-23 Ma) compared to the East Algerian basin and the West Sardinia oceanic floor (31-37 Ma). On the margins and ocean-continent transitions of the Western Mediterranean the new heat flow data point out the existence of two types of local anomalies (length scale 5-30 km): (1) locally increased heat flow up to 153 mW/m² on the Gulf of Lion margin results from thermal refraction of large salt diapirs, and (2) the co-existing of both low (< 50 mW/m²) and high (> 110 mW/m²) heat flow areas on the South Balearic margin suggests a heat redistribution system. We suspect the lateral
L'unité granulitique de l'In Ouzzal (IOGU), ou Terrane de l'In Ouzzal (IOT), est un bloc archéen faisant partie de la mosaïque des terranes du Hoggar. Mobilisée à l'Éburnéen, elle est caractérisée par un métamorphisme de très haute température, appliqué à des séries qui pourraient représenter d'anciennes structures en dômes et bassins. Le but de cette étude, basée sur une campagne de 12 sondages magnétotelluriques (MT) était, d'une part, de caractériser en profondeur les limites extérieures de l'IOGU et, d'autre part, d'examiner la possibilité de reconstituer d'anciennes structures en dômes et bassins, même transformées par le métamorphisme et les déformations ultérieures. L'analyse et la modélisation des données MT montrent que les bordures de l'IOGU plongent en profondeur au moins jusqu'à la base de la croûte et peuvent bien représenter des zones de suture ; à l'intérieur du terrane lui-même, la méthode choisie ne s'est pas révélée suffisamment discriminante pour séparer dômes et bassins trop étirés. Le trait remarquable de la transversale étudiée est un grand accident s'enracinant assez profondément et qui pourrait être interprété comme une faille majeure, séparant l'IOGU en deux compartiments différents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.