Service-oriented architecture provides the ability to combine several web services in order to fulfil a user-specific requirement. In dynamic environments, the appearance of several unforeseen events can destabilize the composite web service (CWS) and affect its quality. To deal with these issues, the composite web service must be dynamically reconfigured. Dynamic reconfiguration may be enhanced by avoiding the invocation of degraded web services by predicting QoS for the candidate web service. In this paper, we propose a dynamic reconfiguration method based on HMM (Hidden Markov Model) states to predict the imminent degradation in QoS and prevent the invocation of partner web services with degraded QoS values. PSO (Particle Swarm Optimization) and SFLA (Shuffled Frog Leaping Algorithm) are used to improve the prediction efficiency of HMM. Through extensive experiments on a real-world dataset, WS-Dream, the results demonstrate that the proposed approach can achieve better prediction accuracy. Moreover, we carried out a case study where we revealed that the proposed approach outperforms several state-of-the-art methods in terms of execution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.