Pine honey is a honeydew honey produced in the East Mediterranean region (Greece and Turkey) from the secretions of the plant sucking insect Marchalina hellenica (Gennadius) (Coccoidea: Marchalini-dae) feeding on living parts of Pinus species. Nowadays, honeydew honey has attracted great attention due to its biological activities. The aim of this study was to study unifloral pine honey samples produced in Greece regarding their physicochemical parameters and antioxidant and antibacterial activity against five nosocomial and foodborne pathogens. These honeys showed physicochemical and microscopic characteristics within the legal limits, except for diastase activity, a parameter known to be highly variable, depending on various factors. Substantially higher levels of H2O2 were estimated compared to other types of honeydew honey, whereas protein content was similar. The total phenolic content was 451.38 ± 120.38 mg GAE/kg and antiradical activity ranged from 42.43 to 79.33%, while FRAP values (1.87 to 9.43 mmol Fe+2/kg) were in general higher than those reported in the literature. Various correlations could be identified among these parameters. This is the first attempt to investigate in depth the antibacterial activity of pine honey from Greece and correlate it with honey quality parameters. All tested honeys exerted variable but significant antibacterial activity, expressed as MIC and MBC values, comparable or even superior to manuka honey for some tested samples. Although honey antibacterial activity is mainly attributed to hydrogen peroxide and proteins in some cases (demonstrated by elevated MICs after catalase and Proteinase K treatment, respectively), no strong correlation between the antibacterial activity and hydrogen peroxide concentration or total protein content was demonstrated in this study. However, there was a statistically significant correlation of moisture, antioxidant and antibacterial activity against Klebsiella pneuomoniae, as well as antioxidant and antibacterial activity against Salmonella ser. Typhimurium. Interestingly, a statistically significant negative correlation has been observed between diastase activity and Staphylococcus aureus antibacterial activity. Overall, our data indicate multiple mechanisms of antibacterial activity exerted by pine honey.
The extraction of phenolic compounds from olive leaves was optimized using three glycerol-based deep eutectic solvents (DESs) with lysine, proline, and arginine. A three-level Box–Behnken design was used to examine the influence of the liquid/solid ratio, concentration of DESs, and extraction temperature on the yield of the extraction process. A second-order polynomial model was used for predicting the polyphenol extraction yield. The optimal predicted conditions were used for extractions and they provided the highest total phenol yields with the glycerol–lysine exhibiting the best performance. Quantification of tyrosol, hydroxytyrosol, oleuropein, luteolin-7-O-glucoside, and rutin in the extracts showed high content in tyrosol in all DESs, particularly with glycerol–lysine and relatively similar contents with other studies for the other phenolic compounds. Finally, a linear relationship between tyrosol content and the total phenolic content of the extracts was observed.
Olive leaves (OLL) are an agri-food waste that may be regarded as a bioresource rich in bioactive polyphenolic metabolites. In this examination, simultaneous organosolv treatment/extraction of OLL polyphenols at elevated temperatures (>110 °C) has been optimized using glycerol, but also two glycerol-based deep eutectic solvents (DES). The assessment of the processes was based on the severity factor and the extraction efficiency factor. In any case, the treatment/extraction with a DES composed of glycerol and citric acid (GL-CA) was found to be the less severe and the most effective in recovering polyphenols from OLL, giving a yield of 69.35 mg gallic acid equivalents per g dry mass. On the other hand, liquid chromatography-mass spectrometry investigation revealed that extraction with either DES used provided extracts with differentiated polyphenolic profile than that obtained when water or 60% (v/v) aqueous ethanol was used as solvents. On the ground of these analysis, evidence emerged regarding hydrolysis of flavone glucosides when the treatment was performed with an alkaline DES composed of glycerol and sodium citrate. The extracts produced also exhibited diversified antioxidant activity, a fact putatively attributed to the different polyphenolic profiles. It was concluded that organosolv treatment/extraction of OLL for polyphenol recovery opens new endeavors in the valorization of this particular waste, but metabolite stability is an issue that merits profounder study.
This study was focused on the simultaneous organosolv treatment/extraction of waste orange peels (WOP) for the effective recovery of polyphenolic antioxidants. The treatments were performed with aqueous glycerol mixtures, which were acidified either with citric acid or Hydrochloric acid (HCl). Process optimization was carried out using response surface methodology and comparative appraisal of the different processes tested, based on both the extraction efficiency factor (FEE), severity factor (SF) or combined severity factor (CSF). Metabolite stability was also of major concern, and it was examined by deploying liquid chromatography-mass spectrometry. The results drawn suggested 90% (w/w) glycerol to be the highest-performing system, providing a yield in total polyphenols of 44.09 ± 5.46 mg GAE g−1 DM at 140 °C for 50 min, with a FEE of 2.20 and an SF of 2.88. Acidification with 1% citric acid was proven less efficient and equally severe, whereas acidification with 1% HCl was less severe but also less efficient. The major disadvantage associated with the use of HCl was its detrimental impact on the polyphenolic composition of WOP since major metabolites, such as narirutin, hesperidin and didymin, did not survive the process. By contrast, the formation of lower molecular weight compounds was observed. With regard to antioxidant properties, the extract obtained with aqueous glycerol displayed significantly higher antiradical activity and reducing power, which was in line with its higher concentration in total polyphenols. It was concluded that organosolv treatment with aqueous glycerol under the conditions employed may boost polyphenol recovery from WOP, thus giving extracts with powerful antioxidant characteristics.
Quercetin (Qt) is a natural flavonoid of high biological significance, and it occurs in a wide variety of plant foods. Although its oxidation by various means has been extensively studied, its behavior with regard to thermal treatments remains a challenge. The study described herein aimed at investigating Qt thermal decomposition, by proposing an empirical sigmoidal model for tracing degradation kinetics. This model was employed to examine the effect of addition of antioxidants on Qt thermal degradation, including ascorbic acid, L-cysteine, and sulfite. Furthermore, degradation pathways were proposed by performing liquid chromatography-tandem mass spectrometry analyses. Upon addition of any antioxidant used, the sigmoidal course of Qt thermal degradation was pronounced, evidencing the validity of the empirical model used in the study of similar cases. The antioxidants retarded Qt degradation in a manner that appeared to depend on Qt/antioxidant molar ratio. No major differentiation in the degradation mechanism was observed in response to the addition of various antioxidants, and in all cases protocatechuic acid and phloroglucinol carboxylic acid were typical degradation products identified. Furthermore, in all cases tested the solutions resulted after thermal treatment possessed inferior antioxidant properties compared to the initial Qt solutions, and this demonstrated the detrimental effects of heating on Qt. The empirical model proposed could be of assistance in interpreting the degradation behavior of other polyphenols, but its validity merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.