The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.Mathematics Subject Classification: 46L53, 60J99, 46L60, 60G50, 82B10, 81Q10, 94A17.
It is known that any locally faithful quantum Markov state (QMS) on one dimensional setting can be considered as a Gibbs state associated with Hamiltonian with commuting nearest-neighbor interactions. In our previous results, we have investigated quantum Markov states (QMS) associated with Ising type models with competing interactions, which are expected to be QMS, but up to now, there is no any characterization of QMS over trees. We notice that these QMS do not have one-dimensional analogues, hence results of related to one dimensional QMS are not applicable. Therefore, the main aim of the present paper is to describe of QMS over Cayley trees. Namely, we prove that any QMS (associated with localized conditional expectations) can be realized as integral of product states w.t.r. a Gibbs measure. Moreover, it is established that any locally faithful QMS associated with localized conditional expectations can be considered as a Gibbs state corresponding to Hamiltonians (on the Cayley tree) with commuting competing interactions.Mathematics Subject Classification: 46L53, 60J99, 46L60, 60G50, 82B10, 81Q10, 94A17.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.