A cracked plate subjected to a sinusoidal loading perpendicular to its plane is considered, and the analytical solution of the dynamic vibration behavior of a plate, which allowed the determination of the stress field near the crack tip, is developed. A mixed mode of loading near the crack tip has been established and described with dynamic stress intensity factors K I (z,t) and K II (z,t) associated with modes I and II crack openings, respectively. To validate the analytical results, a finite element analysis (FEA) of a 1 9 1 m square plate with a thickness of 1 cm, having a middle crack of 10 cm in length, is made. The results have shown significant agreement between analytical and FEA findings.
A new analytical approach was developed in this paper to study the dynamic analysis of a cracked gear tooth subjected to a periodic loading. The finite elements method (FEM) based on the contour integral technique was used in order to validate the effectiveness and reliability of the analytical formulation. A threedimensional (3D) model of a cracked tooth was designed where a refined mesh was applied in the crack region to better simulate the stress concentration. The main objective of this study was to investigate the influence of the crack depth and the external load on the variation of the stress intensity factors (SIF) K I and K II associated with the opening crack modes I and II, respectively, and on the stress field near the crack tip. The obtained results show a significant agreement between the analytical results and the FEM findings.Keywords: Cracked tooth / periodic loading / dynamic stress intensity factors / stress field / finite elements method *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.