The Republic of Djibouti has untapped potential in terms of renewable energy resources, such as geothermal, wind, and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift), Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2, while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2. Thus, the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year, respectively.
Drought is a meteorological and hydrological phenomenon affecting the environment, agriculture, and socioeconomic conditions, especially in arid and semi-arid regions. A better understanding of drought characteristics over short and long timescales is therefore crucial for drought mitigation and long-term strategies. For the first time, this study evaluates the occurrence, duration, and intensity of drought over the Republic of Djibouti by using a long-term (1961–2021) rainfall time series at Djibouti Airport, completed by the CHIRPS precipitation product and local records from 35 weather stations. The drought is examined based on the Standardized Precipitation–Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) at 3-, 6-, 9-, 12-, and 24-month timescales, so as to document short-, medium-, and long-duration events. The SPEI and SPI showed a significant drying tendency for the indices computed over 12 and 24 months at Djibouti Airport. The eastern coastal region of the Republic of Djibouti was the most affected by the increased drought incidence in recent decades, with more than 80% of the extremely and severely dry events occurring within the period 2007–2017. In contrast, the western regions recorded a positive trend in their SPIs during the period 1981–2021, due to the dominance of the June–September (JJAS) rains, which tend to increase. However, in the last few decades, the whole country experienced the droughts of 2006/2007 and 2010/2011, which were the longest and most intense on record. Large-scale climate variability in the Indo-Pacific region partially affects drought in Djibouti. The SPI and SPEI are significantly positively correlated with the Indian Ocean Dipole during October–December (OND), while for JJAS the SPI and SPEI are negatively correlated with Nino3.4. The wet event in 2019 (OND) causing devastating floods in Djibouti city was linked with a positive IOD anomaly. This study provides essential information on the characteristics of drought in the Republic of Djibouti for decision-makers to better plan appropriate strategies for early warning systems to adapt and mitigate recurrent droughts that put the country’s agro-pastoral populations in a precarious situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.