Platelets are anucleate blood cells that play a crucial role in thrombosis and hemostasis. Despite their lack of nuclear DNA, platelets contain significant amounts of microRNA (miRNA) that may have vital functions in post-transcriptional gene regulation. Here, we combined comprehensive miRNA expression profiling by quantitative PCR with target prediction analysis for the most abundant miRNAs in human platelets. A network composed of predicted platelet miRNA target genes was then constructed, using annotations available in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In addition, we evaluated possible differences in miRNA levels between resting and thrombin-stimulated platelets. We identified 281 transcripts, including 228 mature miRNAs and 53 minor miRNAs (or miR*), of which six miRNAs (miR-15 a, miR-339-3 p, miR-365, miR-495, miR-98, and miR-361-3 p) were up- or down-regulated in activated human platelets (P ≤ 0.001). A redundancy-reduced network was established that encompassed 246 genes in five statistically significant functional clusters representing platelet miRNA regulating pathways. Comparison of the 246 network genes with the platelet mRNA expression data available at ArrayExpress database confirmed that most of these genes (89%) are expressed in human platelets. In conclusion, this work affirms a recent microarray study reporting a wide-spread existence of miRNAs in human platelets. Further, we observed that thrombin stimulation was associated with altered levels of some miRNAs in platelets. The proposed functional network, combining computational prediction analysis with annotations from experimental observations, may in addition provide some information about probable miRNA target pathways in human platelets.
Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established.
BackgroundPlatelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA.Materials and MethodsWe used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT) isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts.ResultsConsistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq.ConclusionThe present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components compared with other cell and tissue types. The in vivo functional significance of the non-mitochondrial transcripts remains to be shown.
Summary. Background: Vitamin K epoxide reductase (VKORC1) is the site of inhibition by coumarins. Several reports have shown that mutations in the gene encoding VKORC1 affect the sensitivity of the enzyme for warfarin. Recently, three main haplotypes of VKORC1; *2, *3 and *4 have been observed, that explain most of the genetic variability in warfarin dose among Caucasians. Objectives: We have investigated the main haplotypes of the VKORC1 gene in a Swedish population. Additional objective was to screen the studied population for mutations in the coding region of VKORC1 gene. Patients/methods: Warfarin doses and plasma S-and R-warfarin of 98 patients [with a target International Normalized Ratio (INR) of 2.0-3.0] have been correlated to VKORC1 haplotypes. Controls of 180 healthy individuals have also been haplotyped. Furthermore, a retrospective analysis of case records was performed to find any evidence indicating influence of VKORC1 haplotypes on warfarin response in the first 4 weeks (initiation phase) and the latest 12 months of warfarin treatment. Results and conclusions: Our result shows that VKORC1*2 is the most important haplotype for warfarin dosage. Patients with VKORC1*2 haplotype had more frequent visits than patients with VKORC1*3 or *4 haplotypes, higher coefficient of variation (CV) of prothrombin time-INR and higher percentage of INR values outside the therapeutic interval (i.e. 2.0-3.0) than patients with VKORC1*3 or *4 haplotypes. Also, there was a statistically significant difference in warfarin dose (P < 0.001) and R-warfarin plasma levels (P < 0.01) between VKORC1*2 and VKORC1*3 or 4 haplotypes. Patients with VKORC1*2 haplotype seem to require much lower warfarin doses than other patients.
Therapeutic modulation of pain with morphine and other opioids is associated with significant variation in both effects and adverse effects in individual patients. Many factors including gene polymorphisms have been shown to contribute to the interindividual variability in the response to opioids. The aim of this study was to investigate the significance of UGT2B7, OPRM1 and ABCB1 polymorphisms for interindividual variability in morphine-induced analgesia in patients undergoing hysterectomy. The frequency of these polymorphisms was also investigated in forensic autopsies as morphine is also a very commonly abused drug. Blood samples were collected from 40 patients following abdominal hysterectomy, 24 hr after initiation of analgesia through a patient-controlled analgesia (PCA) pump. Samples were genotyped and analysed for morphine and its metabolites. We also genotyped approximately 200 autopsies found positive for morphine in routine forensic analysis. Patients homozygous for UGT2B7 802C needed significantly lower dose of morphine for pain relief. The same trend was observed for patients homozygous for ABCB1 1236T and 3435T, as well as to OPRM1 118A. The dose of morphine in patients included in this study was significantly related to variation in UGT2B7 T802C. Age was significantly related to both dose and concentration of morphine in blood. Regression analysis showed that 30% of differences in variation in morphine dose could be explained by SNPs in these genes. The genotype distribution was similar between the forensic cases and the patients. However, the mean concentration of morphine was higher in forensic cases compared to patients. We conclude that gene polymorphisms contribute significantly to the variation in morphine concentrations observed in individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.