Yemen is currently experiencing the largest cholera epidemic in recent history. The first cases were declared in September 2016, and over 1.1 million cases and 2,300 deaths have since been reported1. We investigated the phylogenetic relationships, pathogenesis, and antimicrobial resistance determinants by sequencing the genomes of Vibrio cholerae isolates from the Yemen epidemic and recent isolates from neighbouring regions. These 116 genomic sequences were placed within the phylogenetic context of a global collection of 1087 seventh pandemic V. cholerae serogroup O1 and O139 biotype El Tor isolates [2–4]. We show that the Yemeni isolates collected during the two epidemiological waves of the epidemic [1], —the first between September 28th 2016 and April 23rd 2017 (25,839 suspected cases) and the second beginning on April 24th, 2017 (more than one million suspected cases), — are seventh pandemic V. cholerae O1 El Tor (7PET) serotype Ogawa isolates from a single sublineage. Using genomic approaches, we link the Yemen epidemic to global radiations of pandemic V. cholerae and show that this sublineage originated from South Asia and that it caused outbreaks in East Africa before appearing in Yemen. We also show that the Yemeni isolates are susceptible to several antibiotics commonly used to treat cholera, and to polymyxins, resistance to which is used as a marker of the El Tor biotype.
SummaryBackgroundCholera remains a persistent health problem in sub-Saharan Africa and worldwide. Cholera can be controlled through appropriate water and sanitation, or by oral cholera vaccination, which provides transient (∼3 years) protection, although vaccine supplies remain scarce. We aimed to map cholera burden in sub-Saharan Africa and assess how geographical targeting could lead to more efficient interventions.MethodsWe combined information on cholera incidence in sub-Saharan Africa (excluding Djibouti and Eritrea) from 2010 to 2016 from datasets from WHO, Médecins Sans Frontières, ProMED, ReliefWeb, ministries of health, and the scientific literature. We divided the study region into 20 km × 20 km grid cells and modelled annual cholera incidence in each grid cell assuming a Poisson process adjusted for covariates and spatially correlated random effects. We combined these findings with data on population distribution to estimate the number of people living in areas of high cholera incidence (>1 case per 1000 people per year). We further estimated the reduction in cholera incidence that could be achieved by targeting cholera prevention and control interventions at areas of high cholera incidence.FindingsWe included 279 datasets covering 2283 locations in our analyses. In sub-Saharan Africa (excluding Djibouti and Eritrea), a mean of 141 918 cholera cases (95% credible interval [CrI] 141 538–146 505) were reported per year. 4·0% (95% CrI 1·7–16·8) of districts, home to 87·2 million people (95% CrI 60·3 million to 118·9 million), have high cholera incidence. By focusing on the highest incidence districts first, effective targeted interventions could eliminate 50% of the region's cholera by covering 35·3 million people (95% CrI 26·3 million to 62·0 million), which is less than 4% of the total population.InterpretationAlthough cholera occurs throughout sub-Saharan Africa, its highest incidence is concentrated in a small proportion of the continent. Prioritising high-risk areas could substantially increase the efficiency of cholera control programmes.FundingThe Bill & Melinda Gates Foundation.
SummaryBackgroundIn war-torn Yemen, reports of confirmed cholera started in late September, 2016. The disease continues to plague Yemen today in what has become the largest documented cholera epidemic of modern times. We aimed to describe the key epidemiological features of this epidemic, including the drivers of cholera transmission during the outbreak.MethodsThe Yemen Health Authorities set up a national cholera surveillance system to collect information on suspected cholera cases presenting at health facilities. Individual variables included symptom onset date, age, severity of dehydration, and rapid diagnostic test result. Suspected cholera cases were confirmed by culture, and a subset of samples had additional phenotypic and genotypic analysis. We first conducted descriptive analyses at national and governorate levels. We divided the epidemic into three time periods: the first wave (Sept 28, 2016, to April 23, 2017), the increasing phase of the second wave (April 24, 2017, to July 2, 2017), and the decreasing phase of the second wave (July 3, 2017, to March 12, 2018). We reconstructed the changes in cholera transmission over time by estimating the instantaneous reproduction number, Rt. Finally, we estimated the association between rainfall and the daily cholera incidence during the increasing phase of the second epidemic wave by fitting a spatiotemporal regression model.FindingsFrom Sept 28, 2016, to March 12, 2018, 1 103 683 suspected cholera cases (attack rate 3·69%) and 2385 deaths (case fatality risk 0·22%) were reported countrywide. The epidemic consisted of two distinct waves with a surge in transmission in May, 2017, corresponding to a median Rt of more than 2 in 13 of 23 governorates. Microbiological analyses suggested that the same Vibrio cholerae O1 Ogawa strain circulated in both waves. We found a positive, non-linear, association between weekly rainfall and suspected cholera incidence in the following 10 days; the relative risk of cholera after a weekly rainfall of 25 mm was 1·42 (95% CI 1·31–1·55) compared with a week without rain.InterpretationOur analysis suggests that the small first cholera epidemic wave seeded cholera across Yemen during the dry season. When the rains returned in April, 2017, they triggered widespread cholera transmission that led to the large second wave. These results suggest that cholera could resurge during the ongoing 2018 rainy season if transmission remains active. Therefore, health authorities and partners should immediately enhance current control efforts to mitigate the risk of a new cholera epidemic wave in Yemen.FundingHealth Authorities of Yemen, WHO, and Médecins Sans Frontières.
Andrew Azman and colleagues describe their experience of deploying >250,000 doses of oral cholera vaccine in South Sudan in 2014
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.