Speech segmentation is the process of dividing speech signal into distinct acoustic blocks that could be words, syllables or phonemes. Phonetic segmentation is about finding the exact boundaries for the different phonemes that composes a specific speech signal. This problem is crucial for many applications, i.e. automatic speech recognition (ASR). In this paper we propose a new model-based text independent phonetic segmentation method based on wavelet packet speech parametrization features and using the sparse representation classifier (SRC). Experiments were performed on two datasets, the first is an English one derived from TIMIT corpus, while the second is an Arabic one derived from the Arabic speech corpus. Results showed that the proposed wavelet packet de composition features outperform the MFCC features in speech segmentation task, in terms of both F1-score and R-measure on both datasets. Results also indicate that the SRC gives higher hit rate than the famous k-Nearest Neighbors (k-NN) classifier on TIMIT dataset.
Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.