Research into angiogenesis has contributed to progress in the fast-moving field of regenerative medicine. Designing coculture systems is deemed a helpful method to understand the dynamic interaction of various cells involved in the angiogenesis process. We investigated the juxtacrine and paracrine interaction between 3 different cells, namely rat marrow-derived mesenchymal stem cells (rMSCs), rat muscle-derived satellite cells (rSCs), and rat neonatal cardiomyocytes (rCMs), and endothelial cells (ECs) during angiogenesis process. In vitro Matrigel angiogenesis assay was performed whereby ECs were monocultured or cocultured with rMSCs, rSCs, and rCMs or their conditioned media (CM). In addition, in vivo Matrigel plug assay for angiogenesis was conducted to assess the angiogenic potential of the rCM-, rMSC-, and rSC-derived CM. Our results demonstrated that the rMSCs, rSCs, and rCMs elongated along the EC tubules, whereas the rMSCs formed tube-like structures with sprouting tip cells, leading to improved angiogenesis in the coculture system. Moreover, the rMSC-and rSC-derived CM significantly improved angiogenesis tube formation on Matrigel, accelerated EC chemotaxis, and increased the arteriolar density, vascularization index, and vascularization flow index in the Matrigel plug in vivo. Western blotting showed that rMSCs secreted a high level of vascular endothelial growth factor, basic fibroblast growth factor, and stromal-derived factor-1-alpha. Tie2 is also shed from rMSCs. This study demonstrated that stem cells interact with ECs in the juxtacrine and paracrine manner during angiogenesis, and marrow MSCs have superior angiogenic properties.
Background: As the voiding habits of Iranian children differs from other children because of some cultural and religious considerations, we aimed to establish normal reference values of urinary flow rates in Iranian children between 7 to 14 years of age.
Transplanting muscle progenitor cells showed the potential for recapitulation of a myogenic program when injected into deficient rabbit anal sphincter. Objective anal measures of resting and stimulated pressures and electromyographic profile improved. Stem cell-mediated anal myoplasty warrants additional investigation as a new method to treat anal incontinence before attempting this modality in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.