a b s t r a c tIncreased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme.
a b s t r a c tCarbonic anhydrase IX (CA IX) is a transmembrane enzyme upregulated in several types of tumors including glioblastoma multiforme (GBM). GBM is among the most aggressive tumors among gliomas. Temozolomide (TMZ) therapy combined with surgical or radiation approaches is the standard treatment but not effective in long term. In this study we tested the treatment with acetazolamide (ATZ), an inhibitor of CA IX, alone or combined with TMZ. The experiments were performed in 2D and 3D cultures (spheroids) using glioblastoma U251N and human brain tumor stem cells (BTSCs). Several proteins implicated in tumor cell death were also investigated. The key results from these studies suggest the following: (1) Cell death of human glioblastoma spheroids and BTSC is significantly increased with combined treatment after 7 days, and (2) the effectiveness of ATZ is significantly enhanced against BTSC and U251N when incorporated into nano-carriers. Collectively, these results point toward the usefulness of nano-delivery of CA IX inhibitors and their combination with chemotherapeutics for glioblastoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.