ObjectivesThe usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX.Materials and MethodsGas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX.ResultsTwenty-seven constituents were recognized in FGEO. The major component of the oil was β-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at 50 µg/mL was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX.ConclusionsFGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms.
Background: Myrtus communis L. is an evergreen perennial shrub belonging to the Myrtaceae family that is spontaneously growing throughout the Mediterranean area. Myrtle has demonstrated important antimicrobial and antifungal activities to treat bacterial and fungal diseases. Objectives: This study was aimed to develop a new method to evaluate the anti-fungal activity of hydroalcoholic extracts of Myrtle on dermatophytes by bioautography.
Materials and Methods:The species used for this study were: Microsporum canis, M. gypseum and Trichophyton mentagrophytes. The fungi were kept on Sabouraud dextrose agar (SDA) slants at 4°C and subcultured monthly throughout this study. Various fractions were prepared from hydroalcoholic extracts based on polarity. The antifungal assay of different solvent extracts was performed by agar disc diffusion method. A thin layer chromatography (TLC) method was developed to carry out bioautography TLC, the same solvent system as that of bioautography was used. Results: Ethyl acetate and total methanolic extracts respectively had the best antifungal effects against three tested genera of dermatophytes. The ethyl acetate extract and methanolic extract that had the most inhibitory effect compared with any other fractions, were separated by solvent system (trifluroacetic acid, ethyl acetate, methanol, water: 0.1: 10: 0.04: 0.04) by TLC method. The best antifungal effects of the three fungi extracts was obtained in Rf: 0 -0.3.
Conclusions:The active compound may be a flavonoid. Existence of flavonoids in tested fractions could be the important medicinal properties of M. communis leaves. Further work is required to evaluate the exact effect of these biological compounds on animal model or human volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.