This paper has classified nine attenuation laws derived for subduction interface earthquakes through a comparative study based on the peak ground accelerations (PGAs) recorded in Peninsular Malaysia and Singapore. The goal of classification was to identify the attenuation laws that were the most compatible with the region. The PGAs predicted by the relations provided by Nabilah and Balendra (Earthq Eng 16:1076-1094 and Zhao et al. (Bull Seismol Soc Am 96:898-913, 2006) were found to correlate well with the recorded PGAs. The maximum credible hazard in Kuala Lumpur and Singapore was obtained by calculating the acceleration response spectra caused by three great Sumatran megathrust earthquakes (the worst possible earthquake scenarios) using Zhao et al. spectral attenuation law. Current building code in the region requires that buildings should be capable of resisting a notional ultimate lateral design load equals to 1.5 % of the characteristic dead weight, simultaneously applied at each floor (i.e., the minimum design level of buildings equals to *0.15 m/s 2 ). The results show that the risk level for structures of the two cities with natural period T n = 1-1.5 s corresponding to 10-and 15-story buildings located on hard soil sites [National Earthquake Hazards Reduction Program (NEHRP) site class C] is high as the demand spectrum due to a worst possible earthquake scenario with moment magnitude (M W ) 9.5 and an epicentral distance (R epi ) of 600 km from Singapore was noticeably higher than their design level. The results of the present study are & A. Adnan azlanadnan@utm.my A. V. Shoushtari vsabdollah3@live.utm.my M. Zare mzare@iiees.ac.ir N. S. H. Harith applicable in seismic hazard assessment projects in Peninsular Malaysia and Singapore.The most interesting conclusion from the earthquake engineering perspective, however, is that the design spectral shapes specified in IBC 2012 and Eurocode 8 (type 2) codes may not be particularly appropriate for sites that could be affected by large-magnitude, distant earthquakes.
The seismic hazard analysis requires an estimation of ground motion intensity where the process needs to use a compatible ground motion prediction equation or GMPE, which provides ground acceleration estimates in a function of earthquake magnitude and distance. Hence, the effect of current equation often does not accurately represent the earthquake condition in East Malaysia region. In this study, the characteristics of low-to-moderate databases were used and derived by regression analysis in terms of horizontal peak ground acceleration (PGA). The appropriate GMPE design for East Malaysia is based on the ground motion records compiled from strike slip earthquakes that occurred within 10 to 1,350 km. This earthquake data is based on actual data recorded at a broad range of magnitude levels within a wide range of distances. The new equation is used to predict the PGA value throughout East Malaysia by probabilistic method. PSHA is a method to analyse seismic hazard assessment using probability concept by considering the uncertainties of the size, location and rate of occurrence of earthquake and the variation of ground motion characteristics. The four well-known existing attenuation functions are evaluated with current equation to highlight their limitations in magnitude and distance. With a more complete collection of earthquake databases, GMPE has become more reliable. The GMPE of peak ground acceleration for low-to-moderate earthquake at long distance was found to be logarithmically distributed. The equation provides ease in both implementation and interpretation of physical parameters with a comparable standard deviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.