This paper presents a robust machine learning framework for modeling and control of hydraulic actuators. We identify several important challenges concerning learning accurate models of the dynamics for real machines, including noise and uncertainty in state measurements, nonlinear effects, input delays, and dataefficiency. In particular, we propose a dual-Gaussian process (GP) model architecture to learn a surrogate dynamics model of the actuator, and showcase the accuracy of predictions against the piecewise and neural network models that have been widely used in the literature. In addition, we provide robust techniques for learning neural network inverse models and controllers by batch GP inference in an automated, seamless and computationally fast manner. Finally, we demonstrate the performance of the trained controllers in real-world feedforward and tracking control applications.Index Terms-Hydraulic actuators, machine learning for robot control, model learning for control. I. INTRODUCTIONA LL real-world mechanical systems that provide a means to automation today are powered by integrated controllers. These controllers are carefully designed and fine-tuned to provide the best possible performance for the intended application, and their development follows a conventional process. First, the system dynamics are modelled, wherein prior knowledge and general understanding of the physics of the underlying process Manuscript
Heavy-duty mobile machines (HDMMs) are a wide range of machinery used in diverse and critical application areas which are currently facing several issues like skilled labor shortage, poor safety records, and harsh work environments. Consequently, efforts are underway to increase automation in HDMMs for increased productivity and safety, eventually transitioning to operator-less autonomous HDMMs to address skilled labor shortages. However, HDMM are complex machines requiring continuous physical and cognitive inputs from human-operators. Thus, developing autonomous HDMM is a huge challenge, with current research and developments being performed in several independent research domains. Through this study, we use the bounded rationality concept to propose multidisciplinary collaborations for new autonomous HDMMs and apply the transaction cost economics framework to suggest future implications in the HDMM industry. Furthermore, we introduce a conceptual understanding of collaborations in the autonomous HDMM as a unified approach, while highlighting the practical implications and challenges of the complex nature of such multidisciplinary collaborations. The collaborative challenges and potentials are mapped out between the following topics: mechanical systems, AI methods, software systems, sensors, connectivity, simulations and process optimization, business cases, organization theories, and finally, regulatory frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.