Understanding crop phenology is crucial for predicting crop yields and identifying potential risks to food security. The objective was to investigate the effectiveness of satellite sensor data, compared to field observations and proximal sensing, in detecting crop phenological stages. Time series data from 122 winter wheat, 99 silage maize, and 77 late potato fields were analyzed during 2015–2017. The spectral signals derived from Digital Hemispherical Photographs (DHP), Disaster Monitoring Constellation (DMC), and Sentinel-2 (S2) were crop-specific and sensor-independent. Models fitted to sensor-derived fAPAR (fraction of absorbed photosynthetically active radiation) demonstrated a higher goodness of fit as compared to fCover (fraction of vegetation cover), with the best model fits obtained for maize, followed by wheat and potato. S2-derived fAPAR showed decreasing variability as the growing season progressed. The use of a double sigmoid model fit allowed defining inflection points corresponding to stem elongation (upward sigmoid) and senescence (downward sigmoid), while the upward endpoint corresponded to canopy closure and the maximum values to flowering and fruit development. Furthermore, increasing the frequency of sensor revisits is beneficial for detecting short-duration crop phenological stages. The results have implications for data assimilation to improve crop yield forecasting and agri-environmental modeling.
Cercospora leaf spot (CLS; caused by Cercospora beticola Sacc.) is the most widespread and damaging foliar disease of sugar beet. Early assessments of CLS risk are thus pivotal to the success of disease management and farm profitability. In this study, we propose a weather-based modelling approach for predicting infection by C. beticola in sugar beet fields in Belgium. Based on reported weather conditions favoring CLS epidemics and the climate patterns across Belgian sugar beet-growing regions during the critical infection period (June to August), optimum weather conditions conducive to CLS were first identified. Subsequently, 14 models differing according to the combined thresholds of air temperature (T), relative humidity (RH), and rainfall (R) being met simultaneously over uninterrupted hours were evaluated using data collected during the 2018 to 2020 cropping seasons at 13 different sites. Individual model performance was based on the probability of detection (POD), the critical success index (CSI), and the false alarm ratio (FAR). Three models (i.e., M1, M2 and M3) were outstanding in the testing phase of all models. They exhibited similar performance in predicting CLS infection events at the study sites in the independent validation phase; in most cases, the POD, CSI, and FAR values were ≥84%, ≥78%, and ≤15%, respectively. Thus, a combination of uninterrupted rainy conditions during the four hours preceding a likely start of an infection event, RH > 90% during the first four hours and RH > 60% during the following 9 h, daytime T > 16 °C and nighttime T > 10 °C, were the most conducive to CLS development. Integrating such weather-based models within a decision support tool determining fungicide spray application can be a sound basis to protect sugar beet plants against C. beticola, while ensuring fungicides are applied only when needed throughout the season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.