The ecology, population dynamics, and malaria vector efficiency of Anopheles gambiae and An. arabiensis were studied for 2 yr in a Sahelian village of Senegal. Anophelines were captured at human bait and resting indoors by pyrethrum spray. Mosquitoes belonging to the An. gambiae complex were identified by polymerase chain reaction. Of 26,973 females, An. arabiensis represented 79% of the mosquitoes captured and remained in the study area longer than An. gambiae after the rains terminated. There were no differences in nocturnal biting cycles or endophagous rates between An. gambiae and An. arabiensis. Based on an enzyme-linked immunosorbent assay test of bloodmeals, the anthropophilic rate of these 2 vectors were both approximately 60%, when comparisons were made during the same period. Overall, 18% of the resting females had patent mixed bloodmeals, mainly human-bovine. The parity rates of An. gambiae and An. arabiensis varied temporally. Despite similar behavior, the Plasmodium falciparum circumsporozoite protein (CSP) rates were different between An. gambiae (4.1%) and An. arabiensis (1.3%). P. malariae and P. ovale only represented 4% of the total Plasmodium identified in mosquitoes. Transmission was seasonal, occurring mainly during 4 mo. The CSP entomological inoculation rates were 128 bites per human per year for the 1st yr and 100 for the 2nd yr. Because of the combination of a high human biting rate and a low CSP rate, An. arabiensis accounted for 63% of transmission. Possible origin of differences in CSP rate between An. gambiae and An. arabiensis is discussed in relation to the parity rate, blood feeding frequency, and the hypothesis of genetic factors.
Anopheles gambiae is the major African vector of Plasmodium falciparum, the most deadly species of human malaria parasite and the most prevalent in Africa. Several strategies are being developed to limit the global impact of malaria via reducing transmission rates, among which are transmission-blocking vaccines (TBVs), which induce in the vertebrate host the production of antibodies that inhibit parasite development in the mosquito midgut. So far, the most promising components of a TBV are parasite-derived antigens, although targeting critical mosquito components might also successfully block development of the parasite in its vector. We previously identified A. gambiae genes whose expression was modified in P. falciparum-infected mosquitoes, including one midgut carboxypeptidase gene, cpbAg1. Here we show that P. falciparum up-regulates the expression of cpbAg1 and of a second midgut carboxypeptidase gene, cpbAg2, and that this up-regulation correlates with an increased carboxypeptidase B (CPB) activity at a time when parasites establish infection in the mosquito midgut. The addition of antibodies directed against CPBAg1 to a P. falciparum-containing blood meal inhibited CPB activity and blocked parasite development in the mosquito midgut. Furthermore, the development of the rodent parasite Plasmodium berghei was significantly reduced in mosquitoes fed on infected mice that had been immunized with recombinant CPBAg1. Lastly, mosquitoes fed on anti-CPBAg1 antibodies exhibited reduced reproductive capacity, a secondary effect of a CPB-based TBV that could likely contribute to reducing Plasmodium transmission. These results indicate that A. gambiae CPBs could constitute targets for a TBV that is based upon mosquito molecules.Malaria remains a leading cause of morbidity and mortality in human populations, with over 3 billion people living in areas at risk for malaria transmission and an estimated 350 to 500 million clinical episodes occurring annually (29). Plasmodium falciparum malaria causes more than a million deaths each year, mainly in young children in sub-Saharan Africa. Moreover, the malaria burden has increased over the last 10 to 15 years, and this situation has been associated in part with parasite resistance to commonly used antimalarial drugs and resistance of mosquito vectors to insecticides (29). Several strategies are being developed which target either the disease or its transmission. Owing to the complexity of the parasite life cycle, with both human stages that result in disease and mosquito stages that ensure transmission, an effective vaccine might combine pre-erythrocytic (sporozoite and liver stage), asexual erythrocytic, and transmission-blocking components. Although modeling of vaccine effects on malaria transmission dynamics indicates that a transmission-blocking vaccine (TBV) will be most effective in regions where the initial basic reproductive rate of malaria (R 0 ) is low (3,4,8,9), a TBV offers the advantage of blocking the spread of escape mutants that are resistant to asexual-stage ...
Background In 2017, more than 5 million house structures were sprayed through the U.S. President’s Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. Methods While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F 0 Anopheles funestus s.l. tested in Mozambique and Zambia. Results One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. Conclusions This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance. Electronic supplementary material The online version of this article (10.1186/s12936-019-2888-6) contains supplementary material, which is available to authorized users.
The purpose of this study was to evaluate how the impacts from the 2022 World Cup preparations in Qatar influenced local residents’ attitudes, personal and community quality of life perceptions, excitement about hosting the event, and support toward the event. The examination of the way mega sport event impacts influence residents’ perceptions of personal and community quality of life is lacking in the literature. Data were collected using systematic sampling in October 2014 from Qatari nationals and white-collar expatriates. Overall, 2,163 interviews with Qatari nationals (1,058) and white-collar expatriates (1,105) were completed. The results revealed that eight years before the event, sociocultural impacts were the most influential type of impact for residents’ attitudes toward the event, community and personal quality of life, excitement about the event, and support of the FIFA decision to host the event in Qatar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.