Based on two recombinant inbred line (RIL) populations, two corresponding backcross (BC) populations were constructed to elucidate the genetic basis of heterosis in Upland cotton (Gossypium hirsutum L.). The yield, and yield components, of these populations were evaluated in three environments. At the single-locus level, 78 and 66 quantitative trait loci (QTL) were detected using composite interval mapping in RIL and BC populations, respectively, and 29 QTL were identified based on mid-parental heterosis (MPH) data of two hybrids. Considering all traits together, a total of 50 (64.9%) QTL with partial dominance effect, and 27 (35.1%) QTL for overdominance effect were identified in two BC populations. At the two-locus level, 120 and 88 QTL with main effects (M-QTL), and 335 and 99 QTL involved in digenic interactions (E-QTL), were detected by inclusive composite interval mapping in RIL and BC populations, respectively. A large number of QTL by environment interactions (QEs) for M-QTL and E-QTL were detected in three environments. For most traits, average E-QTL explained a larger proportion of phenotypic variation than did M-QTL in two RIL populations and two BC populations. It was concluded that partial dominance, overdominance, epistasis, and QEs all contribute to heterosis in Upland cotton, and that partial dominance resulting from single loci and epistasis play a relatively more important role than other genetic effects in heterosis in Upland cotton.
Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on marker analysis. In backcross populations, no significant correlation was observed between marker heterozygosity and fiber quality performance and it suggested that heterozygosity was not always necessarily advantageous for the high fiber quality. In two hybrids, 111 quantitative trait loci (QTL) for fiber quality were detected using composite interval mapping, in which 62 new stable QTL were simultaneously identified in more than one environment or population. QTL detected at the single-locus level mainly showed additive effect. In addition, a total of 286 digenic interactions (E-QTL) and their environmental interactions [QTL × environment interactions (QEs)] were detected for fiber quality traits by inclusive composite interval mapping. QE effects should be considered in molecular marker-assisted selection breeding. On average, the E-QTL explained a larger proportion of the phenotypic variation than the main-effect QTL did. It is concluded that the additive effect of single-locus and epistasis with few detectable main effects play an important role in controlling fiber quality traits in Upland cotton.
Plant height served as one of model traits to analyse dynamic development. The objective of this research was to investigate quantitative trait loci (QTL) and dynamic QTL for plant height trait using an intraspecific recombinant inbred line (RIL) population and a constructed genetic map in Upland cotton (Gossypium hirsutum L.). Totally, 41 QTL and 23 conditional QTL controlling plant height were detected at two experimental environments, respectively. Four stable QTL were identified simultaneously in both environments. Some QTL identified at the early stage could not be detected at the final stage at plant maturity. Conditional QTL with different genetic effects were identified at certain stages, demonstrating that the expression of QTL had temporal characteristic during plant growth. Therefore, the study of dynamic QTL could unravel temporal genetic patterns controlling complex developmental quantitative traits.
Cottonseed is one of the main by-products of cotton. To explore the genetic composition of oil content (OC) and seed index (SI) is helpful for utilizing the cottonseed. Under multiple environmental conditions, the genetic structures of OC and SI were explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations in Upland cotton. Twenty-four and 31 quantitative trait loci (QTLs) for OC and SI, respectively, were detected using composite interval mapping, in which 9 QTLs for OC and 18 QTLs controlling SI were simultaneously identified in more than two environments or two populations. Fortyseven and 37 QTLs with main effects (M-QTLs) for OC and SI and 114 and 74 QTLs involved in digenic interactions (E-QTLs), respectively, identified by inclusive composite interval mapping. On average, the EQTLs explained a larger portion of the phenotypic variation than the MQTLs did. It was concluded that additive effects of single-locus and epistasis derived from complementary loci with few detectable single-locus effects played an important role in oil content and seed index in Upland cotton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.