In this work, the influence of varied deformation percentages on the hardness and grain size, effective strain variation during simple upsetting is studied. Also, hardness variation in a typical cold upset forging process is predicted by relating hardness and effective strain evolution in a simple upsetting operation empirically. Five different deformation percentages, (13%, 17%, 32.4%, 41%, 50%), are considered for experimentation. Ring compression tests were conducted to determine the friction factor "m". The upset-forging tests were conducted at room temperate and for different deformation percentage on the pure copper cylindrical specimens of 30 mm diameter with aspect ratio (h o /d o) of 1.0. The distribution of hardness in the cold upset specimen was measured using the Brinell Hardness Tester. Also, this work discussing metallographic study of the upset specimens. The micrograph of samples is processed with the "Adobe Photoshop CS2" program and then applying the "Image J" program for estimating the average grain size. The upsetting operation was simulated using a commercial finite element code, ANSYS ver11.0. The results show that the finite element procedure is effective procedure to simulating cold upsetting process with maximum error (7.7%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.