Marketing campaigns that promote and market various consumer products are a well-known strategy for increasing sales and market awareness. This simply means the profit of a manufacturing unit would increase. "Neuromarketing" refers to the use of unconscious mechanisms to determine customer preferences for decision-making and behavior prediction. In this work, a predictive modeling method is proposed for recognizing product consumer preferences to online (E-commerce) products as "Likes" and "Dislikes". Volunteers of various ages were exposed to a variety of consumer products, and their EEG signals and product preferences were recorded. Artificial Neural Networks and other classifiers such as Logistic Regression, Decision Tree Classifier, K-Nearest Neighbors, and Support Vector Machine were used to perform product-wise and subject-wise classification using a user-independent testing method. Though, the subject-wise classification results were relatively low with artificial neural networks (ANN) achieving 50.40 percent and k-Nearest Neighbors achieving 60.89 percent. Furthermore, the results of product-wise classification were relatively higher with 81.23 percent using Artificial Neural Networks and 80.38 percent using Support Vector Machine.
Malware, short for malicious software, is any software program designed to cause harm to a computer or computer network. Malware can take many forms, such as viruses, worms, Trojan horses, and ransomware. Because malware can cause significant damage to a computer or network, it is important to avoid its installation to prevent any potential harm. This paper proposes a machine learning-based malware detection method called MalwD&C to allow the secure installation of Programmable Executable (PE) files. The proposed method uses machine learning classifiers to analyze the PE files and classify them as benign or malware. The proposed MalwD&C scheme was evaluated on a publicly available dataset by applying several machine learning classifiers in two settings: two-class classification (malware detection) and multi-class classification (malware categorization). The results showed that the Random Forest (RF) classifier outperformed all other chosen classifiers, achieving as high as 99.56% and 97.69% accuracies in the two-class and multi-class settings, respectively. We believe that MalwD&C will be widely accepted in academia and industry due to its speed in decision making and higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.