We introduce pointwise measure expansivity for bi-measurable maps. We show through examples that this notion is weaker than measure expansivity. In spite of this fact, we show that many results for measure expansive systems hold true for pointwise systems as well. Then, we study the concept of mixing, specification and chaos at a point in the phase space of a continuous map. We show that mixing at a shadowable point is not sufficient for it to be a specification point, but mixing of the map force a shadowable point to be a specification point. We prove that periodic specification points are Devaney chaotic point. Finally, we show that existence of two distinct specification points is sufficient for a map to have positive Bowen entropy. (2010): 54H20, 37C50, 37B40
Mathematics Subject Classifications
In this paper, we introduce topologically stable points, persistent points, persistent property, persistent measures and almost persistent measures for first countable Hausdorff group actions of compact metric spaces. We prove that the set of all persistent points is measurable and it is closed if the action is equicontinuous. We also prove that the set of all persistent measures is a convex set and every almost persistent measure is a persistent measure. Finally, we prove that every equicontinuous pointwise topologically stable first countable Hausdorff group action of a compact metric space is persistent. In particular, every equicontinuous pointwise topologically stable flow is persistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.