Wind energy is a less-attended renewable energy due to the lack of information about its potential. Some pilot wind turbines were not managed properly and built without considering to the technical feasibility. This study aims to propose a preliminary design of an Arduino-based small wind power generation system. The electricity which is generated by the wind charges the battery. It supplies power of information system which transmits the data of wind speed and wind direction from the remote location to the web server through GPRS network. The remote location which is completed with mobile data coverage is essential for this study. The results of this study are (1) the battery charging stop automatically when the battery is full (2) the data of wind speed and wind direction can be accessed through web browser or Android Smartphone. The data can be used for further analysis to determine the potential of wind energy at the site.
The current study presents a wind resource assessment (WRA) approach by combining existing approaches, including wind probability density estimation based on hourly wind speed frequency, wind power density (WPD) and wind energy density (WED), wind turbine (WT) power output and power curve modeling, and annual energy production (AEP). Wind probability density investigation employed various probability density functions (PDF), including parametric probability density functions such as Weibull, Normal, and Gamma, and non-parametric distribution, including Kernel Density Estimator (KDE). The present study also models the influence of humidity on air density for estimating WPD, WT power output, and AEP. The current study validated the proposed approach by conducting case studies for selected sites of remote Indonesian archipelago islands. AEP estimation proposed by this study can assist the site-turbine fitting design, especially for relatively moist locations.
This study proposed a wind-hydrogen coupling systems control strategy to investigate its feasibility. The control strategy regulates the electrical energy generated by a wind turbine to meet the domestic load demand of a specific site. The remaining electrical energy is regulated to supply electrolyzer for producing hydrogen as energy storage. The stored energy in the form of hydrogen can be reconverted into electricity by utilizing fuel cells to meet the domestic load demand. Selecting proper sites for evaluating the control strategy is critical. Hence this study also conducts a wind resource assessment approach that considers the humidity effect to wind power density, wind turbine power curve, and annual energy production of a wind turbine. This approach achieved a better precise annual energy production estimation than other approaches that neglect the humidity. Proper wind resource assessment resulted in a site for the case study, Mollo Selatan Subdistrict for an on-grid system. The control strategy was modeled and evaluated with MATLAB Simulink. The simulation results show the possibility of storing energy generated by the wind into hydrogen and meeting the load demand of the case study location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.