Polyzwitterions are employed as coating polymers for biomaterials to induce an antifouling property on the surface. Fine-tuning the betaine structure switches the antifouling property to be interactive with anionic tissue constituents in response to a tumorous pH gradient. The ethylenediamine moiety in the carboxybetaine enabled stepwise protonation and initiated the di-protonation process around tumorous pH (6.5). The net charge of the developed polyzwitterion (PGlu(DET-Car)) was thus neutral at pH 7.4 for antifouling, but was cationic at pH 6.5 for interaction with anionic constituents. Quantum dots coated with PGlu(DET-Car) exhibited comparable stealth and enhanced tumor accumulation relative to the PEG system. The present study provides a novel design of smart switchable polyzwitterion based on a precise control of the net charge.
Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI-and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, 13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, 12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NIloaded and blank cubosomes existed in the cubic space group Im3 m. The lattice parameters of the SPI-and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI-and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.Key words cubosome; drug carrier; monoolein; nifedipine; spironolactone; high-pressure homogenizationThe low oral bioavailability of poorly water-soluble drugs remains one of the most challenging aspects of drug development. A wide variety of formulation approaches, including lipid nanoparticles, solid dispersions, complexes with cyclodextrin or chitosan-alginates, nanoemulsions and liposomes, have been used to enhance the solubility and bioavailability of several poorly water-soluble drugs. [1][2][3][4][5] Cubosomes have recently attracted considerable interest from formulation scientists in terms of their potential application as drug delivery systems based on their highly ordered, compartmentalized internal structures, high lipid content and large surface area.Cubosomes are inverse bicontinuous cubic lyotropic crystalline nanoparticles that can be loaded with poorly water-soluble drugs in their three-dimensional cubic phases, leading to pronounced increases in the solubility, stability and bioavailability of these drugs.6-9) Cubosomes can be prepared using nontoxic, biocompatible and biodegradable ingredients, and can be readily used to encapsulate lipophilic drugs. Monoolein is a common amphiphilic building block for the preparation of cubosomes, 10) and is relatively cheap compared with other commonly used lipid excipients such as phytantriol. Nonionic triblock copolymer (Pluronic F-127) is ...
To improve the solubility of the drug nifedipine (NI), highly stabilized solid-lipid nanoparticles (SLNs) of nifedipine (NI-SLNs) were prepared by high pressure homogenization using two phospholipids, followed by lyophilization with individual sugar moieties (four monosaccharides and four disaccharides). The mean particle diameter, polydispersity index (PDI), zeta potential, drug loading, and the encapsulation efficiency of the NI-SLN suspension were determined to be 68.5 nm, 0.3, 62.1 mV, 2.7%, and 97.5%, respectively. In comparison with the NI-SLNs, the NI-SLNs lyophilized with trehalose (NI-SLN-Tre) showed a slight increase in the particle size from 68.5 to 107.7 nm, but the PDI decreased from 0.38 to 0.33, and no significant change in zeta potential was observed. Aqueous re-dispersibility study demonstrated that NI-SLNs lyophilized with trehalose had the maximum concentration (14.7 µg/mL) at 5 min, compared with lyophilized SLNs using other sugars; the use of other sugars also resulted in significant changes in the particle size, PDI, and zeta potential. A trehalose concentration of 2.5% w/v and a two-fold dilution of the SLN suspension were found to be the best conditions for lyophilization. Data from lyophilized SLNs using differential scanning calorimetry, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy indicated eventual transformation of NI-SLN-Tre from a crystalline to an amorphous state during the homogenization process. Finally, a stability study was performed with NI-SLN-Tre for up to 6 months at 30°C and 65% relative humidity, with no significant deterioration observed, suggesting that trehalose might be a useful cryoprotectant for NI-SLNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.