The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM). The experimental and simulation test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. The simulation method is created using an artificial neural network (ANN) which predicts the power produced from the WHRM.
The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM) in a sedan car. The amount of heat energy from exhaust is presented and the experimental test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. However, the existence of WHRM affects the performance of engine by slightly reducing the power. The simulation method is created using an artificial neural network (ANN) which predicts the power produced from the WHRM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.