The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure–property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first time. A single COF layer is precisely four-unit-cell thick and can be transferred to different support surfaces layer-by-layer. The TFP-DHF 2D COF membrane supported on anodic aluminum oxide (AAO) porous supports displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset of approximately 600 Da and a molecular weight cut-off of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
Sulfurized polyacrylonitrile (SPAN) is the most promising cathode for next-generation lithium−sulfur (Li−S) batteries due to the much improved stability. However, the molecular structure and reaction mechanism have not yet been fully understood. Herein, we present a new take on the structure and mechanism to interpret the electrochemical behaviors. We find that the thiyl radical is generated after the cleavage of the S−S bond in molecules in the first cycle, and then a conjugative structure can be formed due to electron delocalization of the thiyl radical on the pyridine backbone. The conjugative structure can react with lithium ions through a lithium coupled electron transfer process and form an ion-coordination bond reversibly. This could be the real reason for the superior lithium storage capability, in which the lithium polysulfide may not be formed. This study refreshes current knowledge of SPAN in Li−S batteries. In addition, the structural analysis is applicable to analyze the current organic cathodes in rechargeable batteries and also allows further applications in Al−S batteries to achieve high performance.
A luminescent Zr(IV)-based metal–organic framework (MOF), with the underlying fcu topology, encompassing a π-conjugated organic ligand with a thiadiazole functionality, exhibits an unprecedented low detection limit of 66 nM for amines in aqueous solution. Markedly, this ultralow detection is driven by hydrogen-bonding interactions between the linker and the hosted amines. This observation is supported by density functional theory (DFT) calculations, which clearly corroborate the suppression of the twisting motion of thiadiazole core in the presence of amine, reducing significantly the nonradiative recombination pathways and subsequently enhancing the emission intensity. Credibly, nicotine regarded as a harmful chemical and bearing an amine pending group is also detected with high sensitivity, positioning this MOF as a potential sensor for practical environmental applications. This finding serves also as a benchmark to understand the sensing mechanism in MOFs.
The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.