Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area B1,500 m 2 g À 1 ), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 mmol g À 1 of trypsin.
The
development of stable, efficient oxygen evolution reaction
(OER) catalyst capable of oxidizing water is one of the premier challenges
in the conversion of solar energy to electrical energy, because of
its poor kinetics. Herein, a bipyridine-containing covalent organic
framework (TpBpy) is utilized as an OER catalyst by way of engineering
active Co(II) ions into its porous framework. The as-obtained Co-TpBpy
retains a highly accessible surface area (450 m2/g) with
exceptional stability, even after 1000 cycles and 24 h of OER activity
in phosphate buffer under neutral pH conditions with an overpotential
of 400 mV at a current density of 1 mA/cm2. The unusual
catalytic stability of Co-TpBpy arises from the synergetic effect
of the inherent porosity and presence of coordinating units in the
COF skeleton.
A strong bond: A strategy based on intramolecular hydrogen-binding interactions in 2D covalent organic frameworks (COFs) is shown to improve the crystallinity, porosity, and chemical stability of the material. The concept is validated by removing the hydrogen-bonding interaction in the methoxy analog which showed a lower stability and crystallinity.
Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first time. A single COF layer is precisely four-unit-cell thick and can be transferred to different support surfaces layer-by-layer. The TFP-DHF 2D COF membrane supported on anodic aluminum oxide (AAO) porous supports displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset of approximately 600 Da and a molecular weight cut-off of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
Mechanochemically synthesized bipyridine based covalent organic framework showing high proton conductivity of 0.014 S cm−1 with improved performance over the solvothermal one giving a stable Open Circuit Voltage (0.93 V at 50 °C) on fabrication in PEM fuel cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.