From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistorscritical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-nbutylammonium fluoride is simply admixed with the conjugated polymer poly(N,N'-bis(7glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2'-bithiophene-coN ,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelflife stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices.
We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites.
This contribution explains the origin of dramatic rate accelerations in chemical reactions taking place in/on aqueous electrosprays. We combine experiments with electrosprays and proton-nuclear magnetic resonance with quantum mechanics to systematically decouple genuine interfacial effects from non-equilibrium conditions.
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.