Objective To identify the rates of neurological events following administration of mRNA (Pfizer, Moderna) or adenovirus vector (Janssen) vaccines in the U.S. Methods We used publicly available data from the U.S. Vaccine Adverse Event Reporting System (VAERS) collected between January 1, 2021 and June 14, 2021. All free text symptoms that were reported within 42 days of vaccine administration were manually reviewed and grouped into 36 individual neurological diagnostic categories. Post‐vaccination neurological event rates were compared between vaccine types and to age‐matched baseline incidence rates in the U.S. and rates of neurological events following COVID. Results Of 306,907,697 COVID vaccine doses administered during the study timeframe, 314,610 (0.1%) people reported any adverse event and 105,214 (0.03%) reported neurological adverse events in a median of 1 day (IQR0‐3) from inoculation. Guillain‐Barre Syndrome (GBS), and cerebral venous thrombosis (CVT) occurred in fewer than 1 per 1,000,000 doses. Significantly more neurological adverse events were reported following Janssen (Ad26.COV2.S) vaccination compared to either Pfizer‐BioNtech (BNT162b2) or Moderna (mRNA‐1,273; 0.15% vs 0.03% vs 0.03% of doses, respectively, p < 0.0001). The observed‐to‐expected ratios for GBS, CVT and seizure following Janssen vaccination were ≥1.5‐fold higher than background rates. However, the rate of neurological events after acute SARS‐CoV‐2 infection was up to 617‐fold higher than after COVID vaccination. Interpretation Reports of serious neurological events following COVID vaccination are rare. GBS, CVT and seizure may occur at higher than background rates following Janssen vaccination. Despite this, rates of neurological complications following acute SARS‐CoV‐2 infection are up to 617‐fold higher than after COVID vaccination. ANN NEUROL 2022;91:756–771
Background: As the world witnessed the devastation caused by the coronavirus disease 2019 (COVID-19) outbreak, a growing body of literature on COVID-19 is also becoming increasingly available. Stroke has increasingly been reported as a complication of COVID-19 infection. However, a systematic synthesis of the available data has not been conducted. Therefore, we performed a systematic review and meta-analysis of currently available epidemiological, clinical, and laboratory data related to both stroke and COVID-19 infection. Methods: We systematically searched Medline, Cinahl, and PubMed for studies related to stroke and COVID-19 from inception up to June 4, 2020. We selected cohort studies, case series, and case reports that reported the occurrence of stroke in COVID-19 patients. A fixed-effects model was used to estimate the pooled frequency of stroke in COVID-19 patients with a 95% confidence interval (CI). Results: Twenty-eight studies were included in the systematic review and seven studies for the meta-analysis. The pooled frequency of stroke in COVID-19 patients was 1.1% (95% CI: 0.8, 1.3). The heterogeneity was low ( I 2 = 0.0%). Even though the frequency of stroke among patients having COVID-19 infection was low, those with concomitant COVID-19 infection and stroke suffered from a more severe infection and eventually had a poorer prognosis with a higher mortality rate (46.7%) than COVID-19 alone. Many COVID-19 patients shared the common traditional risk factors for stroke. We noted that ischemic stroke involving the anterior circulation with large vessels occlusion is the most common type of stroke with more strokes seen in multi-territorial regions, suggesting systemic thromboembolism. An elevated level of D-dimers, C-reactive protein, ferritin, lactic acid dehydrogenase, troponin, ESR, fibrinogen, and a positive antiphospholipid antibody were also noted in this review. Conclusions: The occurrence of stroke in patients with COVID-19 infection is uncommon, but it may pose as an important prognostic marker and indicator of severity of infection, by causing large vessels occlusion and exhibiting a thrombo-inflammatory vascular picture. Physicians should be made aware and remain vigilant on the possible two-way relationship between stroke and COVID-19 infection. The rate of stroke among patients with COVID-19 infection may increase in the future as they share the common risk factors.
Background Transverse myelitis (TM) is a relatively uncommon condition, and vaccine-associated myelitis is even rarer. Concern regarding neurological complications following vaccination escalated following the report of TM during the safety and efficacy trials of the COVID-19 vaccine. Case presentation We report the first case of Longitudinal Extensive Transverse Myelitis (LETM) in Malaysia following administration of the chimpanzee adenovirus-vectored (ChAdOx1 nCoV-19) vaccine. A 25-year-old female presented with bilateral lower limb weakness and inability to walk with a sensory level up to T8 with absent visual symptoms. Urgent gadolinium-enhanced magnetic resonance imaging (MRI) of the spine showed long segment TM over the thoracic region. Cerebrospinal fluid autoantibodies for anti-aquaporin-4 and anti-myelin-oligodendrocyte were negative. A diagnosis of LETM following vaccination was made, and the patient was started on a high dose of intravenous methylprednisolone. The patient eventually made a recovery following treatment. Conclusion LETM is a rare but serious adverse reaction following vaccination. Previously reported cases showed an onset of symptoms between 10 to 14 days post-vaccination, suggesting a delayed immunogenic reaction. However, the incidence of myelitis in COVID-19 is much more common, far greater than the risk associated with vaccination.
Objective To evaluate the efficacy of high-frequency repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex as a migraine prevention by conducting a systematic review and meta-analysis. Background The efficacy of high-frequency repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex as preventive migraine treatment remains debatable. Methods PubMed, Scopus, CINAHL, CENTRAL, and BioMed Central databases were searched from their inception until December 2020. Randomised trials comparing high-frequency repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex with sham for migraine prevention were included. The risk of bias was assessed using the Cochrane guidelines. Headache days, pain intensity, acute medication intake, and disability were extracted as study outcomes and the mean difference with a random-effects model was used to determine the effect size. Results Meta-analysis revealed that high-frequency repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex significantly reduced acute medication intake (Mean Difference = 9.78, p = 0.02, 95%CI: 1.60, 17.96, p = 0.02) and functional disability (Mean Difference = 8.00, p < 0.05, 95%CI: 4.21, 11.79). However, no differences were found in headache days and pain intensity reduction, although there was a slight trend favouring high-frequency repetitive transcranial magnetic stimulation. Conclusion High-frequency repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex may be effective in reducing acute medication intake and disability. However, more studies are needed to strengthen this preliminary evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.