This paper presents an experimental and numerical simulation to investigate a hybrid vertical axis wind turbine model highly efficient which can be worked at low wind speed by studying the aerodynamic characteristics of four models of hybrid VAWTs. The hybrid WT consists of the SWT having two blades and the DWT type straight having two blades. Four models were constructed to study experimentally and numerically to choose the best model. Two models were DWT in the upper and SWT in the lower, also two models were SWT in the upper and DWT in the lower. The phase stage angle between the turbines is 0o and 90o . The experimental and numerical results showed that the performance of hybrid WT where DWT in the upper and SWT in the lower with phase stage 90o is better than in the other models, it can be started to work at a wind velocity of 2.2 m/s. At the wind velocity 3 m/s, the values of the parameters are the rotational speed (198 rpm), the CP (0.3195), the CT (0.2003), the TSR (1.6) and self-starting rotation at this value of wind velocity (3 m/s). The efficiency of extracting the wind power by hybrid WT is (51.2 %).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.