The SAS code was applied to CD4 count measurement data (IMPI_29_2016.sas) from the IMPI trial.
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya.
BackgroundThe benefit of a given treatment can be evaluated via a randomized clinical trial design. However, protocol deviations may severely compromise treatment effect since such deviations often lead to missing values. The assumption that methods of analysis can account for the missing data cannot be justified and hence methods of analysis based on plausible assumptions should be used. An alternative analysis to the simple imputation methods requires unverifiable assumptions about the missing data. Therefore sensitivity analysis should be performed to investigate the robustness of statistical inferences to alternative assumptions about the missing data.AimsIn this paper, we investigate the effect of tuberculosis pericarditis treatment (prednisolone) on CD4 count changes over time and draw inferences in the presence of missing data. The data come from a multicentre clinical trial (the IMPI trial).MethodsWe investigate the effect of prednisolone on CD4 count changes by adjusting for baseline and time-dependent covariates in the fitted model. To draw inferences in the presence of missing data, we investigate sensitivity of statistical inferences to missing data assumptions using the pattern-mixture model with multiple imputation (PM-MI) approach. We also performed simulation experiment to evaluate the performance of the imputation approaches.ResultsOur results showed that the prednisolone treatment has no significant effect on CD4 count changes over time and that the prednisolone treatment does not interact with time and anti-retroviral therapy (ART). Also, patients’ CD4 count levels significantly increase over the study period and patients on ART treatment have higher CD4 count levels compared with those not on ART. The results also showed that older patients had lower CD4 count levels compared with younger patients, and parameter estimates under the MAR assumption are robust to NMAR assumptions.ConclusionsSince the parameter estimates under the MAR analysis are robust to NMAR analyses, the process that generated the missing data in the CD4 count measurements is missing at random (MAR). The implication is that valid inferences can be obtained using either the likelihood-based methods or multiple imputation approaches.
Background. Child mortality is a global health problem. The United Nations’ 2018 report on levels and trends on child mortality indicated that under-five mortality is one of the major public health problems in Ghana with a rate of 60 deaths per 1000 live births. To further mitigate this problem, it is important to identify the drivers of under-five mortality in order to achieve the United Nations SDG Goal 3 target 2. Methods. In this study, we investigated the effects of some selected risk factors on child mortality using data from the 2014 Ghana Demographic Health Survey. We modelled the relationship between child mortality and the risk factors using a logistic regression model under the frequentist and Bayesian frameworks. We used the Metropolis-Hastings Algorithm to simulate parameter estimates from the posterior distributions, and statistical analyses were carried out using STATA version 14.1. Results. Results from the frequentist framework are in line with those from the Bayesian framework. The results showed an increased risk of death among children who were delivered through caesarean and reduced relative odds of death among children whose sizes are average or large at birth and whose mothers have formal education. Conclusions. There is a need for improved health facilities for better health-care for mothers and children. Education should, among other things, emphasise on the need for mothers to go for regular check-ups during antinatal and postnatal periods for improved mother and child health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.