In this paper we outline and demonstrate the critical simulation approach to understanding the data operations of visual social media platforms. We situate this approach within the field of platform studies and position it as a ‘hybrid digital method’, before describing its application for descriptive, forensic and speculative purposes in two current research projects: one that uses machine vision combined with mixed-methods qualitative research to explore Instagram’s algorithmic visual culture; and one that combines automated data donation and machine vision to explore Facebook’s ad targeting practices.
In this paper, by mapping datasets to a set of non-linear coherent states, the process of encoding inputs in quantum states as a non-linear feature map is re-interpreted. As a result of this fact that the Radial Basis Function is recovered when data is mapped to a complex Hilbert state represented by coherent states, non-linear coherent states can be considered as natural generalisation of associated kernels. By considering the non-linear coherent states of a quantum oscillator with variable mass, we propose a kernel function based on generalized hypergeometric functions, as orthogonal polynomial functions. The suggested kernel is implemented with support vector machine on two well known datasets (make circles, and make moons) and outperforms the baselines, even in the presence of high noise. In addition, we study impact of geometrical properties of feature space, obtaining by non-linear coherent states, on the SVM classification task, by using considering the Fubini-Study metric of associated coherent states.
In this paper, by mapping datasets to a set of non-linear coherent states, the process of encoding inputs in quantum states as a non-linear feature map is re-interpreted. As a result of the fact that the Radial Basis Function is recovered when data is mapped to a complex Hilbert state represented by coherent states, non-linear coherent states can be considered as a natural generalisation of the associated kernels. In this paper, as an example of kernels based on non-linear coherent states, we propose kernel functions based on generalized hypergeometric functions, as orthogonal polynomial functions. The suggested kernel is implemented with the support vector machine on two well known datasets (make circles, and make moons) and outperforms the baselines, even when the level of noise is high. In addition, we study the impact of the geometrical properties of the feature space, obtained by the non-linear coherent states, on the SVM classification task, by considering the Fubini-Study metric of the associated coherent states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.