Connected vehicles are a vital part of smart cities, which connect over a wireless connection and bring mobile computation and communication abilities. As a mediator, fog computing resides between vehicles and the cloud and provides vehicles with processing, storage, and networking power through Vehicular Ad-hoc networks (VANET). VANET is a time-sensitive technology that requires less time to process a request received from a vehicle. Delay and latency are the notorious issues of VANET and fog computing. To deal with such problems, in this work, we developed a priority-based fog computing model for smart urban vehicle transportation that reduces the delay and latency of fog computing. To upgrade the fog computing infrastructure to meet the latency and Quality of Service (QoS) requirements, 5G localized Multi-Access Edge Computing (MEC) servers have also been used, which resulted tremendously in reducing the delay and the latency. We decreased the data latency by 20% compared to the experiment carried using only cloud computing architecture. We also reduced the processing delay by 35% compared with the utilization of cloud computing architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.